

Anchorage, Alaska USA October 20-22, 1986

Alaska Sea Grant Report
May 1987

Acknowledgements

The International Rockfish Symposium, the fifth in the Lowell Wakefield Fisheries Symposium Series, was planned to bring together scientists and managers involved with biolog and management of Sebastes species to provide information for use in developing management strategies for the rockfish complex.
Program planning committee members are:
H. Richard Carlson

National Marine Fisheries Service
Robert C. Clasby
Alaska Department of Fish and Game
Steven K. Davis
North Pacific Fishery Management Council
Lewis J. Haldorson
University of Alaska, Juneau
Grace Klein-MacPhee
Narragansett, Rhode Island
Sponsors of the international Rockeish Symposium are the Alaska Department of Fish and Game, the National Marine Fisheries Service Northwest and Alaska Fisheries Center, the North Pacific Fishery Management Council, and the University of Alaska Sea Grant College Program.

Production and layout of these proceedings is by Sue Keller and the cover art by Karen Stomberg of the University of and the cover art by Karen Stomberg of the University of Alaska Sea Grant college Program. Manuscripts for this publication were provided camera-ready by the authors and compiled and printed by the Alaska Sea Grant College Program
cooperatively supported by NOAA, Office of Sea Grant and cooperatively supported by NoA, office of Sea Grant and number NABGAA-D-SG041, project number A/75-01: and by the University of Alaska with funds appropriated by the state.
IntroductionLewis Haldorson
Keynote Address
Quality starts with fundamentals

\qquad 5
Session I -- History of the Fisheries
The redfish resources off Canada's east coast 15
D.B. Atkinson
A history of California rockfish fisheries 35
William H. Lenarz
The rockfish fisheries off western Canada, 1860-1985 43
S.J. Westrheim
The history of the rockfish fisheries in Alaskan waters 51
Barry Bracken
Session II - Life History and ReproductionMovement studies of nearshore demersal rockfishes in Puget Sound,
shington....Kathleen R. Matthews, Bruce S. Miller and Thomas P. QuinnOcean climate influences on groundfish recruitmentin the California Current73
Jerrold NortonStatus of early life history studies of northeast Pacific rockfishes99
\qquad
Post-larval copper rockfish in the St 129feeding, and growth in the first year
Lewis Haldorson and Laura J. Richards
Reproductive mode and energy costs of reproduction143Reproductive mode and energy costs of reproduction
in the genus Sebastes. George W Boehlert Muneharu Kusakari and Juro Yamada
Session III -- Aging: Growth and MortalityUse of a length frequency simulator to explore the informin length data for a lobastes brevispinis).
Richard D. StanleyAge and growth of yelloweye rockfish (Sebastes ruberrimus) landed171
Age and graw Alaska
in southeastern Alaska Victoria Moran O'Connell and Fritz C. Fun
\qquad
A comparison of age estimates derived from the surface andection methods of otolith reading for Pacific ocean perchSebastes alutus)Richard D. Stanley
ong-term cycles of growth in Sebastes: Extracting information 197
from otoliths. George W. Boehlert and Mary M. YoklavichPopulation parameters for rougheye rockfish (Sebastes aleutianus)209
Bonita Nelson and Terrance J. Quinn II
gession IV -- Stock Assessment
Results from tagging black rockinsh (Sabastas melanops) off the231
Washington and northern Oregon coast
\qquad
Brian N. Culver
Results of a bottom trawl survey of Pac241
off Washington and Oregon during L. Weinber Mark E. Wilkins and Kenneth L. Weinberg
okfish in the Aleutian Islands: Results from the 1980 and 1983 267
U.S.-Japan cooperative demersal trawl surveysThomas WilderbuerComparing abundance and productivity estimates of Pacific ocean287Comparing abundance and productivity
perch in waters off the United StatesDaniel H. lto
The British Columbia inshore rockfish fishery: Stock assessment299
and fleet dynamics of an unrestricted fishery 299
Identification of species assemblages and results of management pplication for shelf and slope rockfishes of British Columbia 309
B.M. Leaman and D.A. Nagtegaa
Restricted year-class structure and recruitment lag within adiscrete school of yellowtail rockfish.329
H. Richard Carlson
Session V - Management of Stocks
Recent exploitation patterns and future stock rebuilding strategiesfor acadian redfish, Sebastes fasciatus Storer, in the Gulf of Maine-Gearges Bank region of the northwest Atlantic... 335Ralph K. Mayo
Incorporating reproductive value into Pacific ocean perch management. 355
B.M. Leaman
Impacts of management regulations on the catch and utilizationof rockfish in Oregon369
Ellen K. Pikitch
Session VI -- Workshop on future rockfigh research needs 38
Robshop summary.
Participants. 389


```
            arval fjentingor 1967. Fish. Res. Board Can
            off British Columbla
            Manuscr. Rep. Ser. 951, 23 porm, M.S. Smith.
5. Hestrheim, S.J., W.R. Harling* D. Wurity, spawning season, and
    1968. Preliminary report on maturity, Spawnindes) collected
        1968. Prelimification of rockfishes Sebastodes)
        off British Columbia in 1968.
        off Britishen. Ser. 1005, 28 p.
    Hiens, J.A., and J.M. Scott. of energy flow in Oregon coastal
    Wiens, J. A., and estimation of energy flow
        soabrd populations. Condor 77:439-452.
        lie Echeverria, T.
```



```
        In press. Thirty-four specles reproduction. U.S. Natl. Mar 
        maturity and seash. Bull.
```

Addendum
MacGregor, J. S.
98. Relative Calif. Coop. Oceanic
and Baja
Se to late to be included in our review
rockfish laryae collected 1
contains an analysis of accurrences of rockfions of S . jordani. S .
lt contains an analysis of accurrences of rockion of
the CalcofI program, and discusses distributions
paucispinis. S. macdonald, and S. levis specifically.
lt contains an analysis of accurrences of rockion of
the CalcofI program, and discusses distributions
paucispinis. S. macdonald, and S. levis specifically.
paucispinis, s. macdonaldi, and $\underline{5}$. Tevis specticaly.

Proc. Int Mockinh Symp Oct 1986, Anchorage, Alask

Post-larval copper rockfish in the Strait of Georgia: Habitat use, feeding, and growth in the first year

Lewis Haldorson
University of Alaska, Juneau
Juneau, Alaska
and
Laura J. Richards
Department of Fisheries and Oceans
Nanaimo, British Columbia

Many demersal marine fishes have pelagic larvae which subsequentiy settle into benthic habitats. The pelagic-demersal transition is critical event for these young fishes, as many have specific habitat requirements. Some of these species are able to discriminate among micro habitats at the time of the pelagic-demersal transition (Marliave 1977). After initial settlement, young-of-the-year (Yov) fishes may select habitats based on factors such as food avallabulity (Jones 1984), stwelter avallability (Shulman 1984, 1985, Ebelong and Laur 1985), predator density (Shulman 1985) and presence of conspecifics (Sweatman 1983). The pelagie-demersal transition may result in high cortality, depending on the success with which the young fish locat suitable shelter and appropriate prey.

Copper rockfish (Sebastes caurinus) is found in shallow rocky-reef habitats from Califorma to Alaska (Hart 1973). It release pelagic larvae, which subsequently recruit to shallow reef enviranments carr 1983). Throughout most of its range, copper rockfish is one of a number of rockfish species found in nearshore waters. However, in the Strait of Georgia, British Columbla, rockfish diversity is low, and copper rockfish is the most common shallow water ($<20 \mathrm{~m}$) species. As a result, copper rockfish is an important component of nearshore ree commaities of the Strait of Georgia, and is exploited by both reereational and commercial fisheries (Richards 1986).

The process of recruitment is poorly understood for most rockfishes although, for temperate reef fishes, macrophytes apparently are important features in post-larval habitats. In the Labrid species Psoudolabrus celidotus, for example, recruitment was consistently higher in certain habitats, defined principaliy by macrophyte type Wones 1904). In California, several post-settlement rockfishes first appear in kelp canopies, followed by ontogenetic shifts to more benthic
habitats (Carr 1983); similarily, Boehlert (1977) found that pre-juvenile splitnose rockfish (S: diploproa) frequent patches of floating kelp prior to their demersal transition. In the study reported here, we examined patterns of habitat use by post-larval yoy copper rockfish in the Strait of Georgia, including changes in density, size distributions, and feeding habits over time. The primary objective was to identify which shallow reef environments might be especially valuable to copper rockfish in their first year.

Study Area

The study was conducted off Snake Isiand, a small island $(0.52 \mathrm{~km}$ by 0.24 km) located in the Strait of Georgia on the east coast of Vancouver Island (Fig, 1). This site was chosen because of the diversity of benthic habitats available, and becasue of its relative isolation. The nearest land mass is a small island 2.3 km away, which is separated from Snake Island by a channel with depths over 180 m . The nearest headland is 2.4 km distant, with deep intervening channe 1 s .

Habitats were categorized on the basis of the presence or absence of dominant macropinytes. They are: kelp forest (K F), Agarum slope (AG), eelgrass bed (EG), or sand (SN) (Table 1). In the following sections we identify habitats by their two letter designators, and, in the case of the KF habitat, the bottom and canopy are separately identified as KF-bottom and KF-canopy.

Methods

Fish densities were estimated while SCUBA diving, Visual counts were made by swiming along randomly placed 25^{-m} transect lines in each of made by swimming along randomy placed $25-\mathrm{m}$ transect ines in each of the four habitats in each of three time periods. Ten replicate transects comprised each havitat/time sample. Fish were recorded if they were observed in the water column within 1 m of esther side of the transect line. In areas with dense algal cover, such as rocky slopes covered with Agarum, divers searched the algae to flush any hidden individuals. In the KF habitat, where stands of Nereocystis formed an extensive canopy, invtial counts were made within 1.5 m of the bottom, faltawed by second count in the kelp canopy. The two counts were combined for the KF transect total. Copper rockfish were identified as yoy, juvenile or adult, based on size.

Transect counts were conducted August 15-22, Septemter 24-27, and October 17-22, 1985. Transects in each habitat were surveyed on at least two different days in each time period. All dives were performed between 0900 and 1300 . Algal cover in each habitat was estimated in August and September from four randomly placed $15-\mathrm{m}$ transects. In addition, while counting fish in the KF habitat, divers recorded the number of Nereocystis stipes withon the $2-m$ wide transect band.

Columbia, Canada.

Table 1. The major nabitats at the Snake [sland study site. Depths are relative to mean sea level.

1. Kelp Forest ($\mu \mathrm{F}$) $5-11 \mathrm{~m}$. An area characterized by dense stands of the glant kelp Nereocystis leutkeana, with a canopy extending to the sea surface. The understory is dominated by the kelp Agarum fimbriatum (752 cover)
2. Agarum slope (AG) $5-14 \mathrm{~m}$. Rocky slopes dominated by the understory kelp Agarum fimbriatum (862 cover). Occasional broken rocks provide additional vertical relief.
3. Eelgrass Bed (EG) 7 - 11 m. Areas where the perennial eelgrass Zostera marina occurs in dense stands, rooted in sandy substrate Individual plants reach a height of 1.6 m . The bottom 15 gently sloping. Algal arift material is common.
4. Sand (SN) 日-30 m. Areas of sandy substrate with no rooted macrophytes. The bottom is sparsely covered with algal drift dispersed from the rocky areas ($31 x$ cover with drift algae, mostly Agarum)
voy copper rockfish were collected after density counts had been completed in each time period. Divers armed with small-mesh hand nets captured fish in the order in which they were encountered, selecting no more than a few fish from a single school. In August, fish from the KF habitat were collected from canopy and bottom locations. By September densities in the KF and SN habitats were too low to continue sampling. Fish were placed on ice imnediately after capture, and were frozen whthin few hours. Later, the frozen fish were thawed in ice water, damp-dried with paper towels, measured for fork length to the neares mm , and weighed to the nearest centigram. Otoliths (saggitae) were removed and stored in alcohol, and stomachs were removed and fixed in $10 x$ formain.

Settlement date was estimated by counting dally otoivth increments. A distinct mark, which is structurally identical to the metamorphic mark documented by victor (1903), occurred in most otoliths, and is assumed to mark the time of the pelagie-demersal transition (Figure 2). In July 1986, a recently metamorphosed YoY copper rockfish was collected in the Stralt of Georgia, near Nanamo. The otoliths from that fish clearly show a recently formed clear area with no peripheral increments (Figure 2). We regard tims as a provisional validation of the metamorphic mark, pending further studies. Otoliths were mounted on microscope slides pending further studies. Otoliths ware mounted on microscope sides atoliths from specimens collected in August were read whole, whereas Otoliths from specimens collected in August mere read whole, whereas clear fingernall hardener and ground down on 600 gmit sandpaper. The number of increments peripheral to the metamorphic mark was assumed to number of increments peripheral to the number of days since settlement.

Food habits were quantified by examining stomach contents of each fist under a binocular dissecting microscope. Individual prey items were sorted into homogeneous taxonomic groups, and counted. Percent volume of each prey group was estimated by spreading prey items to a uniforn thickness over a background grid of 1 mm squares, then counting the area covered. In the case of larger prey items, such as shrimp, the area covered was multiplied by their estimated thichness relative to

B.

Figure 2. A. Otolith from a fish collected in September 1985, showing showing recently formed inth from fish collected in July 1986
the thickness of smaller items. The mean percent volume (xV) was calculated as the average of all values for individual specimens in each sample. The percent occurrence of prey catagories in each sample is the percent of specimen stomachs in which the prey catagory was found.

Transformations of density and size data did not produce distributions with homoscedastic variances. Hence we used a nonparametric test (Kruskal-Wallis) to compare densities and sizes among habitats within a time period, and among time periods within a habitat. We used the Wilcoxon two-sample test in all cases where there were only two medians to compare.

Results

Spatial and temporary variation in density.
yor copper rockfish were the mast abundant fish encountered on transects. Older juvenile and adult copper rockfish also occurred, but at a maximum density of 1.8 fish/transect (AG habitat in September). No other rockfish species occurred on transects. Lingcod, probably the major predator on yoy copper rockfish, had a maximum density of 0.8 fish/transect in the AG habitat in September and in the EG habitat in Octoter. The distribution of YOY copper rockfish varied considerably among
habitats (Figure 3). In August, densities were highest in the $K F$ habitats (Figure 3). In August, densities were highest in the KF habitat, somewhat lower in the EG and AG habitats, and lowest in the SN habitat. By September, densities in the $K F$ and $S N$ habitats had declined to near zero, but remained relatively high in EG and $A G$ habitats. The trend continued in October, with low densities in $K F$ and SN habitats, and relatively high densities in $E G$ and Ag habitats. Differences in density were significant ($p<.001$) across habitats for each month, although there were no significant differences between the $A G$ and EG habitats in August and October, based on pairwise comparisons. In September, the density of Yoy copper rockfish was significantly greater ($p(000$) in the EG habitat than in the $A G$ habitat.

There were also significant changes in density of you rockfish over time in eact habitat, with the exception of the AG habitat. Density peaked in the EG habitat 7π September ($p<.05$), whereas density decreased dramatically in the KF and SN habitats after August ($p<.001$). During August, most Yov copper rockfish in the $K F$ habitat were associated with the kelp canopy. However, in September and October Yoy copper rockfish were only found on the floor of the kelp forest. A notable decrease occurred in the density of Nereocystis plants during notable decrease occurred in the density of Nereocystis plants during the study, as the mean number of stipes in the kf habitat hin in October ($p<.001$, Kruskal-Wallis test).

copper 3. Density, in number per transect (50 square meters), of yoy study site in the Strait of Georgia three months at the Snake Island Spatial and temporal variation in size.

Size differences were apparent for yoy copper rockfish collected from when yoy copper rite in each time period ($p<.001$, Tabie 2). In August, when YoY copper rockfish occupied all four habitats, the Iargest fish Were collected from the KF-bottom habitat, followed by EG, KF-canopy SN and AG habitats. Fish in the KF-bottom habitat were significantiy larger than fish in other habitats by pairwise comparison tests. In September and October fish in the EG habitat were marginally larger chan fish in the AG habitat ($p<.05$ and $p=.05$, respectively).
The largest size increase for you copper rockfian
August - September period ($p<, 001$ for hoth $E G$ ind occurred over the inereases between September and October hoth EG and $A G$ habitats). Size habitat ($p(.01$), but not for October were significant for the August and October aver for habitats, respectively. 0.15 and $0.16 \mathrm{~mm} /$ day in the $A G$ and EG

Settlement Date.

August number of otolith increments peripheral to the metamorphic mark in dates in Figure 4. Settlement provided the distribution of settiement dates in Figure 4. Settlement appears to have occurred in settlement otalith during the first week of August. The daily natur one major August inerements is verified by comparison of settlement of the August and September specimens. The distributionstement dates from back-calculated from the two sampling peributions of settlement dates (figure 4); thus, the number of increments added betwrtually identical
dates in August and September is approximately mual to the number of calendar days in that interval.

Table 2. Sample sizes (N), mean length and standard error ($S E$) in mm for Yoy copper rockfish collected at Snake Island. Habitat abtreviations are given in Table 1.

TIME/HABITAT	N	LENGTH	SE
August			
AG	89	36.5	0.4
KF-bottom	49	42.2	0.7
KF-canopy	99	38.2	0.3
EG	61	30.8	0.7
SN	66	37.3	0.6
September	59	44.6	0.7
AG	03	46.4	0.6
EG			
October	29	45.6	1.2
AG	57	48.4	0.6

Food habits.
Recently settied copper rockfish juveniles fed on a variety of planktonic zooplankton, epi-benthic crustaceans, and benthos- or macrophyte-associated mobile invertebrates (Tables 3 and 4). Harpacticoid copepods, gammerid amphipods, caprellid amphipods, mysids and shrimp were especially important prey groups. Generally they appear to feed opportunistically.

In August, pelagic planktonic prey ware an important component of the diet of fish in KF (calanoid copepods) and $A G$ (crab zoesa) habitats. With those exceptions, prey were predominately epibenthic or demersal. Harpacticoid copepods were the most commonly found prey in the diet in August, especially in habitats outside the kelp forest; and were the most important (in ZV) single prey group in $A G$ and $S N$ habitats.

Thme series of diet compositions were available for fish from $A G$ and $E G$ habitats. Some prey groups were consistently used, but there also were some ontogenetic shifts in feeding habits (Tables 3 and 4). In the $A G$ habitat, harpacticoid copepods remained important prey in September 111 ZV) and October (19 XV), although a shift to larger prey was evident by the increase in shrimp in September (31 zV) and October (18 zV), and mysids in October (28 ZV). In the EG habitat, shrimp were a main diet component in August (26 ZV), and continued to be 1 mportant in September (30 zV) and October (45 zV). After August, fish in the EG habitet mere feeding almost exclusively on large pi-benthic or benthic crustaceans eeding aimost exclusively on large epl-benthic or benthic crustaceans (shrimp, gammerid amphipods and mysids).

Figure 4. Back-calculated date of settiement for yoy copper
rockfish at the Srake island study site collected ($n=348$) and September ($n=37$), based on number of otol inst increments. Distributions shown are based on totat numbers three day interval, beginning on Julian Day 200 (July 20 , in each Maximum settlement is in the interval beginning August

Table 3. Frequency of occurrence of major taxonomic groups of prey found in YoY copper rockfish stomachs. KFB: KF-bottom habitat, KFC: KF-canopy habitat; other habitat abbreviations are given in Table 1.

PREY GROUP	AUGUST					SEPTEMBER		Octooer	
SAMPLE SIZE		EG	KFB	KFC	SN	AG	EG	AG	EG
SAMPLE SIZE	32	32	32	31	32	43	41	28	34
Calanord Copepod	. 16	.11	.13	. 80	. 03	. 10		. 15	
Harpacticold Copepod	. 93	. 93	. 58	. 52	. 96	. 50	. 05	. 63	. 25
Crab Zoea	. 16								
Gammerid Amphipod	.13	. 14	. 29	. 16	. 31	. 26	. 78	. 44	. 33
Capreilid Amphipod	.06	. 29	. 45	. 42	. 37	. 03		.07	. 84
Stomatopod	. 03	.04		.83	.03			. 04	.0日
Mysid	. 19	. 11	. 19	. 06	.10			. 37	
Shrimp	.03	. 18	. 13		. 10	. 38	2	22	
Polychaete		. 11	. 29						
		. 11	. 29	.10	.21	. 06	. 18		.04

4. Percent volume, expressed as the mean proportion of the ach prey catagory, for Yoy copper total stomach volume in each habitat at the Snake Island site in
 each month. KFB: given in Table 1.

PREY CATAGORY	AUGUST					september		OCTOBER	
	AG	EG	KFB		5N		EG		$\begin{aligned} & \text { EG } \\ & 34 \end{aligned}$
SAMPLE SIZE	32	32	32	31	32				
	. 82	.01	-	. 25	-	.02	.01		
Calanold copepod Harpacticold		.01 .14	. 11	. 08	. 28	. 11	-		.01
Harpacticold copepod	. 28	. 14	. 1						
Crab zoea	.13								
	. 04	.03	. 11	. 85	. 06	.21	. 29	. 09	. 16
Gamerid amphipod	. 04	. 12	. 23	. 25	. 21	. 81			-
Caprellid amphipod stomatopod	. 04	. 12	. 23	. 25	. 2			-	. 01
Mysid	. 67	. 36	. 19	. 01	.04			. 28	. 15
Streinp	. 02	. 26	. 15		.10	. 31	.30	. 18	. 45
Polychaete		. 11	. 88	. 05	.01	. 06	. 65	.06	
Unident.	. 39	. 25	. 12	.30	. 27	. 28	. 33	. 22	.14

Discussion
的 There was probably little mixing of Yor copper as there were signtficant during the initial post-larval summer persh size in August. Subsequent among-habitat differences in mean fish ineitional recruitment from changes in density could result from additional from nearby sites, plankton, migration of post-larval juveniles combination of these diankton, marion among habitats, mortality, or any combination of continued at fispersion it is unlikely that settlement from the plankton continges and factors. it after the start of the study, as the otolith ages new Snake island after of the samples give no indication of new by length frequencis also unlikely that densities were affected by ettlement. from other reef areas, because of the relative isolaflected aigration from other reef we assume that all density changes reflected Snake island. Therefore; we ass mortality.
movements among habitats andion occur in response to changing
antogenetic shifts in habitat use occur in response avallability Ontogenetic shifts such as shelter from predation or prey availabitats resource values, such as she bluegill sunfish switch foraging habitats (Werner and Gilliam when the relative food valuay forage in less prey-rich habitats with 1983as, although these fish presence of predators (Werner et al. 1983b) more shelter when that post-larvae of a temperate reef fish Jones (1984) found that post-larvae of temperate
preferentially used habitats with high algal biomass and increased prey density, although he recognied the difficulty in separating the ffects of food availability and protection from predators. Predation is undoubtedly a factor in habitat resource value in the strait of Georgia. Potemtial predators in the study area include lingcod (Milier and Geibel 1973) and adult copper rockfish (Prince and Gotshall 1976, roulton 1977), and various bird species (Carr 1983).

Post-larval rockfish juveniles have been observed to shift habitats as they grow (Carr 1993), with associated changes 17 feeding habits (Singer 1985). Copper rockfish in the Strait of Georgia follow a imilar pattern although we observed them to initialiy occupy a rester diversity of habitats than observed in Californ7a (Carr 1983). The scape of our study did not allou the controlied field experiment ecessary to quantify the relative importance of prey vs. predotors is necessary to quantify the relative importance of prey vs. predators as factors in habitat selection. However, we did examine prey use by mabitat, over time. During the three months of this study, Yoy copper rockfish consistently explaited certain prey types within a habitat. For example, fish in the AG habitat ate harpacticold copepods throughout the study, even though in October the fish were larger than in earlier samples. We suspect, therefore, that the reduction in use of kelp forest habitats between August and September was a result of reduced sheiter availability and/or reduced density of all prey types, and was not a result of changing preferences by growing fish.

In the Strait of Georgia, post-larval copper rockfish initially utilize variety of reef-associated habitats. Kelp forests are an especially important habitat during this phase. However, the relative food and helter values of shallow reef habitats change seasonally with the production cycles of the dominant macrophytes and their associated invertebrate populations. Within the first few months of settlement Yoy copper rochfish shift to demersal habitats with perennial macrophytes. For Yoy copper rochfish the avallabilizty of reef areas with both summer kelp forests and winter perennial macrophytes is a feature that potentially enhances first year survival. Such areas may therefore, be especiaily valuable as nursery areas, and could possibiy contribute disproportionately large numbers of individuals to older age contribu

Acknowledgements

Diving assistance was provided by A. Cass and R. van den Broek. J Garing assisted in laboratory analyses and many aspects of the fiela work. L. H. was supported by a Canadian Studies Faculty Research Grant.

Literature Cited

Boehlert, G. W. 1977. Timing of the surface-to-benthic migration in juvenile rochfish, Sebastes diploproa, off southern California. Fish. Bull. U.S. 75:887-890.

Carr, M. H. 1983. Spatial and temporal of patterns of
rearuitment of young-of-the-year rockpishes (Gerus Sebastes) into eentral Csilfornta kwlp fortst. M.Sc. Thesis, San Francisco State University, California.

Ebeling; A. W. and D. R. Laur. 1985. The influence of plant cover on surfperch sbundance at an offishore tomperate reef. Envir. Btol. Fish. 12:169-179.

Hart, J. L. 1973. Pacific fishes of Canadi. Fish. Res. Ed. Canade Bul7. 180.

Jones, 6. P. 1984. Population ecology of the temperate resf fish Pseudolabrus celidotus Bloch Schneider (Pisces: Labridaty. 1. Factors finfluencing recruitment. J. Exp. Mar Biol. Ecol. 75:207-276.

Marliave, J. B. 1977. Substratu preferences of settiting larvae of aarine ftshes rearad in the laboratory. J. Exp. Nar. Biol. Ecol. 27:47-60.

Miller, D. J. and J. J. Geibel. 1973, Sumary of blue rockfish and 1 ingcod life histortes; a reef ecology study; and giant ke1p, Mecrocystis pyrifera, experiments in Monterey Bay, California. Calif. Dept. Fish Game. Fish Bul1. 158.

Moulton, L. L. 1977. An ecological anmiysis of fisthes inhabiting the rocky nearshore regians of northern Puget Sound, Washington. Ph.D. Thesis, University of Wastingiton, seattie.

Prince, E. D. and D. W. Gotshall. 1976. Food of the copper rockfish, Sebastes courimus Riohardson, associated with an artificial reif in south Humboldt Bay, California. Cal. Fish G4.0 62:274-285.

Richards, L. J. 1986. PSARC Monking Paper G85-1. 1986 ascescment for commercially exploited rockfish stocks in the Strait of Georgia. Gan. MS Rep. Fish. Aquat. Sci, 1085: 55p.

Shulman, M. J. 1984, Resource limitation and recruitment patterns in a coral roef fish assumplage. J. Exp. Mar. Biol. Eeol. 74:85-109.

Stulman, M. J. 1985, Recruitment of coral reef fishes: effects of distribution of predators and shelter. Ecology 66:1056-1066.

Singer: M. M. 1905. Food habits of juvenile rockfishes (Sebustes) in central Celifornia kelp forest. Fish. Bull. U.S. 83n531-541.

Sweatman, H. P. A. 1983. Influence of conspecifics on choice of settlewent by larvae of two pomacentrid fishes (Dascyllus aruanus and D. reticulatus) on coral reefs. Mar- Biol. 75.225-229.

Victor, B. C. 1983. Settiement and larval metamorphosis produce distinct marks on the otoliths of the slippery dick,

Halichotres bivittatus. In: The ecology of deep and shaliow coral reifs. pp 47-5i, M. L. Reaki. (ed.). U.S. Dept
Commerce. Wishington, D. C.
Wernar, E, E, G G Mittibe
1983a. Experimental tests of D. J. Hall and J. F. Gilliam the roie of relative habitat optimal habitat use in fish: 64:1525-1539.

Wernar, E. E., J. F. Gillijam, D. J. Hall and G. G. Mittelbach.
1983b. An on habitat use in fish. Ecology $54,1540-1549$ predation risk

and species interactions in size ig84. The ontogenetic niche Rev. Ecol. Syst. 15:393-426. size-structured populations. Ann

