### Effect of the San Juan Islands Marine Preserves on Demographic Patterns of Nearshore Rocky Reef Fish

Eric Eisenhardt

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

University of Washington

2001

Program Authorized to Offer Degree: Aquatic and Fishery Sciences

### University of Washington Graduate School

This is to certify that I have examined this copy of a master's thesis by

Eric Eisenhardt

and have found it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made.

Committee Members:

Bruce S. Miller

Lawrence L. Moulton

Vincent F. Gallucci

Date: <u>December 20, 2001</u>

In presenting this thesis in partial fulfillment of the requirements for a Master's degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S. Copyright Law. Any other reproduction for any purposes or by any means shall not be allowed without my written permission.

| Signature |  |
|-----------|--|
| •         |  |

Date\_\_\_\_\_

### University of Washington

#### Abstract

Effect of the San Juan Islands Marine Preserves on Demographic Patterns of Nearshore Rocky Reef Fish

Eric Eisenhardt

Chairperson of the Supervisory Committee: Professor, Bruce S. Miller School of Aquatic and Fishery Sciences

Nearshore rocky reef fish were surveyed via subtidal visual transects in reserve and paired non-reserve sites during 1999 and 2000. The investigation occurred in the northern portion of San Juan Channel, in the inland sea of northwest Washington State. Demographic data are presented as fish per hectare (for population density) and lengthfrequency distribution (for individuals' lengths) and are comprised of two studies.

The first study is a historical time-series at one site, Point George on Shaw Island. Comparisons are made between four time periods: 1974-76 (Moulton 1977), 1987 (Casselle 1987), 1991-92 (Miller unpublished data) and 1999 (this study). Point George, like all the San Juan Islands Marine Preserves, was declared a restricted fishing zone and closed to non-tribal bottomfishing in 1990.

The second study is spatially replicated comparison of reserve sites to paired nonreserve sites. All data used in the second study were collected in 2000. The 2000 spatial study compares population densities and length-frequency distributions of eight species in three pairs of reserve/non-reserve sites. In addition, 2000 length data are compared to historical data collected from the San Juan Archipelago (Moulton, 1977). Surveys were designed to target the eight largest, most abundant and conspicuous species of nearshore rocky reef fish, including five rockfish: copper (*Sebastes caurinus*), quillback (*Sebastes maliger*), black (*Sebastes melanops*), yellowtail (*Sebastes flavidus*) and Puget Sound (*Sebastes emphaeus*); as well as lingcod (*Ophiodon elongatus*), kelp greenling (*Hexagrammos decagrammus*) and striped surfperch (*Embiotoca lateralis*).

Reserve effects are species specific. Some species were larger and more abundant in reserves, some showed opposite trends and some showed no difference between reserves and non-reserves. In addition, direct reserve effects appear to cause indirect effects via interactions between species, particularly *O. elongatus* predation of *S. emphaeus*. Year 2000 spatial and temporal patterns of young-of-the-year of the *Sebastes caurinus* / *Sebastes maliger* population density and length frequency distribution are also presented.

In general, reserves have a positive, direct effect on density and length-frequency distribution of populations that have been increasing over time and are fished. These effects appear to intensify with fishing pressure. Reserves have no direct effect on unfished populations. Reserves have no direct effect on decreasing (over time) and fished populations, although these populations may be maintained by reserves with high substrate complexity. Alternative management measures appear necessary to recover these species. Reserves can have a negative, indirect effect on populations increasing over time if reserves increase the size of predators.

# TABLE OF CONTENTS

| Page                                                                          |
|-------------------------------------------------------------------------------|
| LIST OF FIGURESiv                                                             |
| LIST OF TABLESvi                                                              |
| INTRODUCTION                                                                  |
| METHODS AND MATERIALS12                                                       |
| RESULTS23                                                                     |
| Population densities at the Point George study site over time23               |
| Length-frequency distributions at the Point George study site over time24     |
| Copper rockfish28                                                             |
| Kelp greenling29                                                              |
| Puget Sound rockfish46                                                        |
| Black rockfish46                                                              |
| Yellowtail rockfish63                                                         |
| Quillback rockfish63                                                          |
| Lingcod80                                                                     |
| Comparison of habitat and fishing activity between 2000 spatial study sites80 |

| Population de | ensities at 2000 spatial study sites              | 91          |
|---------------|---------------------------------------------------|-------------|
| Length-freque | ency distributions at 2000 spatial study sites    | 94          |
| Coppe         | er rockfish                                       | 97          |
| Kelp g        | greenling                                         | 97          |
| Puget         | Sound rockfish                                    | 97          |
| Black         | rockfish                                          |             |
| Yellov        | wtail rockfish                                    | 97          |
| Quillb        | back rockfish                                     | 97          |
| Linge         | od                                                | 97          |
| Stripe        | d surfperch                                       | 126         |
| YOY           | copper / quillback rockfish                       |             |
| Patterns of Y | OY copper /quillback rockfish abundance and lengt | h-frequency |
| distri        | bution observed in the 2000 spatial study         | 126         |
|               |                                                   |             |
| CUSSION       |                                                   | 136         |
|               |                                                   |             |

| DISCUSSION136                                                                   |
|---------------------------------------------------------------------------------|
| Population densities in the Point George study site over time                   |
| Length-frequency distributions in the Point George study site over time137      |
| Comparison of habitat and fishing activity between spatial study sites          |
| Population densities for 2000 spatial study sites140                            |
| Length-frequency distributions for spatial study sites in 2000 and 1974-76 from |
| the same region141                                                              |

| Patterns of 2000YOY copper / quillback rockfish abundance and length-              |
|------------------------------------------------------------------------------------|
| frequency distribution by sampling date and site143                                |
| Effect of reserves on demographic patterns of each target species144               |
| Copper rockfish144                                                                 |
| Kelp greenling145                                                                  |
| Puget Sound rockfish146                                                            |
| Black rockfish148                                                                  |
| Yellowtail rockfish148                                                             |
| Quillback rockfish149                                                              |
| Lingcod150                                                                         |
| Striped surfperch152                                                               |
| YOY copper / quillback rockfish152                                                 |
| Marine mammal predation inside reserves153                                         |
|                                                                                    |
| SUMMARY156                                                                         |
|                                                                                    |
| FUTURE RESEARCH161                                                                 |
|                                                                                    |
| LITERATURE CITED162                                                                |
|                                                                                    |
| APPENDIX A: Population densities for 2000 spatial study sites by species, sampling |
| time and depth strata166                                                           |

### LIST OF FIGURES

| Fig | Figure Page                                                                       |  |
|-----|-----------------------------------------------------------------------------------|--|
| 1.  | Map of study sites in San Juan Channel, Washington6                               |  |
| 2.  | Annual number of boat-based bottomfish angler trips in North Puget Sound9         |  |
| 3.  | Diagram of SCUBA transect survey design used in 2000 spatial study15              |  |
| 4.  | Population densities at Point George over time25                                  |  |
| 5.  | Copper rockfish winter length-frequency distributions at Point George over time30 |  |
| 6.  | Copper rockfish spring length-frequency distributions at Point George over time32 |  |
| 7.  | Copper rockfish summer length-frequency distributions at Point George over time34 |  |
| 8.  | Copper rockfish fall length-frequency distributions at Point George over time36   |  |
| 9.  | Kelp greenling winter length-frequency distributions at Point George over time38  |  |
| 10. | Kelp greenling spring length-frequency distributions at Point George over time40  |  |
| 11. | Kelp greenling summer length-frequency distributions at Point George over time42  |  |
| 12. | Kelp greenling fall length-frequency distributions at Point George over time44    |  |
| 13. | Puget Sound rockfish winter length-frequency distributions at Point George47      |  |
| 14. | Puget Sound rockfish spring length-frequency distributions at Point George49      |  |
| 15. | Puget Sound rockfish summer length-frequency distributions at Point George51      |  |
| 16. | Puget Sound rockfish fall length-frequency distributions at Point George53        |  |
| 17. | Black rockfish winter length-frequency distributions at Point George over time55  |  |
| 18. | Black rockfish spring length-frequency distributions at Point George over time57  |  |
| 19. | Black rockfish summer length-frequency distributions at Point George over time59  |  |
| 20. | Black rockfish fall length-frequency distributions at Point George over time61    |  |

| 21. | Yellowtail rockfish winter length-frequency distributions at Point George             |
|-----|---------------------------------------------------------------------------------------|
| 22. | Yellowtail rockfish spring length-frequency distributions at Point George66           |
| 23. | Yellowtail rockfish summer length-frequency distributions at Point George68           |
| 24. | Yellowtail rockfish fall length-frequency distributions at Point George70             |
| 25. | Quillback rockfish winter length-frequency distributions at Point George72            |
| 26. | Quillback rockfish spring length-frequency distributions at Point George74            |
| 27. | Quillback rockfish summer length-frequency distributions at Point George76            |
| 28. | Quillback rockfish fall length-frequency distributions at Point George78              |
| 29. | Lingcod winter length-frequency distributions at Point George over time81             |
| 30. | Lingcod spring length-frequency distributions at Point George over time               |
| 31. | Lingcod summer length-frequency distributions at Point George over time85             |
| 32. | Lingcod fall length-frequency distributions at Point George over time                 |
| 33. | Substrate complexity at the six 2000 spatial study sites                              |
| 34. | Reef slope at the six 2000 spatial study sites90                                      |
| 35. | Mean population densities at 2000 spatial study sites for populations increasing over |
|     | time at Point George92                                                                |
| 36. | Mean population densities at 2000 spatial study sites for populations decreasing over |
|     | time at Point George95                                                                |
| 37. | Mean population densities at 2000 spatial study sites for populations recovering over |
|     | time at Point George and other populations96                                          |
| 38. | Length-frequency distributions of copper rockfish at 2000 spatial study sites98       |
| 39. | Length-frequency distributions of kelp greenling at 2000 spatial study sites102       |

| 40. | Length-frequency distributions of Puget Sound rockfish in 2000 spatial study106      |
|-----|--------------------------------------------------------------------------------------|
| 41. | Length-frequency distributions of black rockfish at 2000 spatial study sites110      |
| 42. | Length-frequency distributions of yellowtail rockfish at 2000 spatial study sites114 |
| 43. | Length-frequency distributions of quillback rockfish at 2000 spatial study sites118  |
| 44. | Length-frequency distributions of lingcod at 2000 spatial study sites122             |
| 45. | Length-frequency distributions of striped surfperch at 2000 spatial study sites127   |
| 46. | Length-frequency distributions of YOY copper / quillback rockfish at 2000 spatial    |
|     | study sites129                                                                       |
| 47. | Length-frequency distributions of YOY copper / quillback rockfish by 2000            |
|     | sampling date at Neck Point non-reserve site                                         |
| 48. | Length-frequency distributions of YOY copper / quillback rockfish by 2000            |
|     | sampling date at Shady Cove reserve site133                                          |
| 49. | Length-frequency distributions of YOY copper / quillback rockfish by 2000            |
|     | sampling date at Jones Island non-reserve site134                                    |
| 50. | 2000 length-frequency distributions for YOY copper / quillback rockfish with all     |
|     | sampling dates grouped135                                                            |

# LIST OF TABLES

| Table |                                                                         | ge |
|-------|-------------------------------------------------------------------------|----|
| 1.    | Study site profiles                                                     | 8  |
| 2.    | Physical data from dives used in the Point George time series (Study 1) | 19 |

| 3.  | Physical data from dives used in the 2000 spatial study (Study 2)20                 |
|-----|-------------------------------------------------------------------------------------|
| 4.  | Fishing activity observed before and after 2000 spatial study dives21               |
| 5.  | Winter copper rockfish summary statistics, ANOVA table, t-tests, and percent mature |
|     | at Point George over time                                                           |
| 6.  | Spring copper rockfish summary statistics, ANOVA table, t-tests, and percent mature |
|     | at Point George over time                                                           |
| 7.  | Summer copper rockfish summary statistics, ANOVA table, t-tests, and percent        |
|     | mature at Point George over time                                                    |
| 8.  | Fall copper rockfish summary statistics, ANOVA table, t-tests, and percent mature   |
|     | at Point George over time                                                           |
| 9.  | Winter kelp greenling summary statistics, ANOVA table, t-tests, and percent mature  |
|     | at Point George over time                                                           |
| 10. | Spring kelp greenling summary statistics, ANOVA table, t-tests, and percent mature  |
|     | at Point George over time41                                                         |
| 11. | Summer kelp greenling summary statistics, ANOVA table, t-tests, and percent         |
|     | mature at Point George over time43                                                  |
| 12. | Fall kelp greenling summary statistics, ANOVA table, t-tests, and percent mature    |
|     | at Point George over time45                                                         |
| 13. | Winter Puget Sound rockfish summary statistics, ANOVA table, t-tests, and percent   |
|     | mature at Point George over time48                                                  |
| 14. | Spring Puget Sound rockfish summary statistics, ANOVA table, t-tests, and percent   |
|     | mature at Point George over time                                                    |

| 15. | Summer Puget Sound rockfish summary statistics, ANOVA table, t-tests, and percent  |
|-----|------------------------------------------------------------------------------------|
|     | mature at Point George over time52                                                 |
| 16. | Fall Puget Sound rockfish summary statistics, ANOVA table, t-tests, and percent    |
|     | mature at Point George over time54                                                 |
| 17. | Winter black rockfish summary statistics, ANOVA table, t-tests, and percent mature |
|     | at Point George over time56                                                        |
| 18. | Spring black rockfish summary statistics, ANOVA table, t-tests, and percent mature |
|     | at Point George over time                                                          |
| 19. | Summer black rockfish summary statistics, ANOVA table, t-tests, and percent        |
|     | mature at Point George over time60                                                 |
| 20. | Fall black rockfish summary statistics, ANOVA table, t-tests, and percent mature   |
|     | at Point George over time62                                                        |
| 21. | Winter yellowtail rockfish summary statistics, ANOVA table, t-tests, and percent   |
|     | mature at Point George over time65                                                 |
| 22. | Spring yellowtail rockfish summary statistics, ANOVA table, t-tests, and percent   |
|     | mature at Point George over time67                                                 |
| 23. | Summer yellowtail rockfish summary statistics, ANOVA table, t-tests, and percent   |
|     | mature at Point George over time69                                                 |
| 24. | Fall yellowtail rockfish summary statistics, ANOVA table, t-tests, and percent     |
|     | mature at Point George over time71                                                 |
| 25. | Winter quillback rockfish summary statistics, ANOVA table, t-tests, and percent    |
|     | mature at Point George over time73                                                 |

| 26. | Spring quillback rockfish summary statistics, ANOVA table, t-tests, and percent    |
|-----|------------------------------------------------------------------------------------|
|     | mature at Point George over time75                                                 |
| 27. | Summer quillback rockfish summary statistics, ANOVA table, t-tests, and percent    |
|     | mature at Point George over time77                                                 |
| 28. | Fall quillback rockfish summary statistics, ANOVA table, t-tests, and percent      |
|     | mature at Point George over time79                                                 |
| 29. | Winter lingcod summary statistics, ANOVA table, t-tests, and percent mature at     |
|     | Point George over time                                                             |
| 30. | Spring lingcod summary statistics, ANOVA table, t-tests, and percent mature at     |
|     | Point George over time                                                             |
| 31. | Summer lingcod summary statistics, ANOVA table, t-tests, and percent mature at     |
|     | Point George over time                                                             |
| 32. | Fall lingcod summary statistics, ANOVA table, t-tests, and percent mature at Point |
|     | George over time                                                                   |
| 33. | Mean population densities, standard errors and 3x3 ANOVA p-values for the six      |
|     | 2000 spatial study sites93                                                         |
| 34. | Two-sample F-test for variance of copper rockfish total lengths100                 |
| 35. | Two-sample t-tests of copper rockfish total lengths, and percentage of populations |
|     | larger than length at 50% maturity101                                              |
| 36. | Two-sample F-test for variance of kelp greenling total lengths104                  |
| 37. | Two-sample t-tests of kelp greenling total lengths, and percentage of populations  |
|     | larger than length at 50% maturity105                                              |

| 38. | Two-sample F-test for variance of Puget Sound rockfish total lengths108                |
|-----|----------------------------------------------------------------------------------------|
| 39. | Two-sample t-tests of Puget Sound rockfish total lengths, and percentage of            |
|     | populations larger than length at 50% maturity109                                      |
| 40. | Two-sample F-test for variance of black rockfish total lengths112                      |
| 41. | Two-sample t-tests of black rockfish total lengths, and percentage of populations      |
|     | larger than length at 50% maturity113                                                  |
| 42. | Two-sample F-test for variance of yellowtail rockfish total lengths116                 |
| 43. | Two-sample t-tests of yellowtail rockfish total lengths, and percentage of             |
|     | populations larger than length at 50% maturity117                                      |
| 44. | Two-sample F-test for variance of quillback rockfish total lengths120                  |
| 45. | Two-sample t-tests of quillback rockfish total lengths, and percentage of              |
|     | populations larger than length at 50% maturity121                                      |
| 46. | Two-sample F-test for variance of lingcod total lengths124                             |
| 47. | Two-sample t-tests of lingcod total lengths, and percentage of populations larger      |
|     | than length at 50% maturity125                                                         |
| 48. | Two-sample F-test for variance, two-sample t-tests of striped surfperch total lengths, |
|     | and percentage of populations larger than length at 50% maturity128                    |
| 49. | Two-sample F-test for variance, two-sample t-tests of YOY copper / quillback           |
|     | rockfish total lengths131                                                              |
| 50. | Factors that may determine the effect of the San Juan Islands Marine Preserves on      |
|     | each species of interest                                                               |

### Acknowledgements

I would like to thank my committee, Dr. Bruce S. Miller, Dr. Lawrence L. Moulton, and Dr. Vincent F. Gallucci. They provided criticisms, invaluable historical data, and help with sampling design. I would also like to thank Dr. A.O.D. Willows for allowing me to use the facilities at the University of Washington Friday Harbor Laboratories.

Field and diving assistance were supplied by: B. Hunt, S. Sublett, J. Gregg, J.

Kido, D. Waller, D. Cooper, L. Self, C. Catton, B. Pister, A. Freeman, and V. Manfredi.

Support for this work was provided by a scholarship from the University of Washington Graduate School, the School of Aquatic and Fishery Sciences Recruitment and Scholarship Committee and Dr. David Armstrong.

#### **INTRODUCTION**

Marine Protected Areas (**MPA**s) have recently been defined as "any area of the marine environment that has been reserved by federal, state, territorial, tribal, or local laws or has regulations to provide lasting protection for part or all of the natural and cultural resources within" (Presidential Executive Order 13158, 2000).

A marine reserve is a particular type of MPA that specifically restricts fishing activity. This thesis studied three areas known as the San Juan Islands Marine Preserves, established by the State of Washington in 1990. These areas function as marine reserves for nearshore rocky reef fish.

Marine reserves have been recommended for protecting habitat and promoting recovery of fish populations (Parker *et al.* 2000), and have been described as a method of increasing fishery yields (Alcala and Russ 1996, Roberts and Bohnsack 2001). In addition, marine reserves have been shown to contain greater reproductive potential of targeted species than non-reserve areas (Palsson 1998).

Marine reserve theory predicts that conservation of broodstock in certain areas increases production of larvae and juveniles that are exported to the surrounding area. This will cause total biomass and landings in exploited fisheries to increase and length frequency distributions to shift upward (Bohnsack 1996; Ballantine 1994). This 'reserve effect' should be especially evident for long-lived species, with high site-fidelity and increasing fecundity with age, such as rockfish (Bloeser 1999). However, this effect has yet to be empirically demonstrated for many species and ecosystems.

Most research on marine reserves to date has taken place in tropical systems. Studies have shown temporal increases in abundance and size of fish in marine reserves on tropical reefs (Alcala and Russ 1990; Roberts and Polunin 1991), and export of adult biomass outside reserves (Russ and Alcala 1996). Yet, while the study of tropical systems is important, study of temperate systems is also crucial. Moreover, given that temperate systems typically differ from tropical ones in terms of lower fish diversity, longer-lived fish species and other factors, results from tropical systems may not generalize to temperate ones. In temperate regions, nearshore rocky reef fish are particularly important because they are often a central part of the nearshore ecosystem and, in the northeast Pacific, a key component of recreational and commercial fisheries (Soh *et al.* 1998; Paddack and Estes 2000).

A handful of studies have tested the influence of marine reserves on nearshore rocky reef fish assemblages in temperate regions (McCormick and Choat 1987; Palsson 1998; Paddack and Estes 2000; Martel *et al.* 2000). An early study by McCormick and Choat (1987) studied one species in two locations in New Zealand. Although the primary purpose of their research was methodological, they found that reserves had greater abundance of this species. A study in Washington State by Palsson (1998) compared five species in two reserve and five non-reserve sites. He found mixed effects for density and size for different species, but with greatest density and size in the oldest marine reserve area. In a more recent study, Paddack and Estes (2000) studied six rockfish and four other species in three reserve and three non-reserve sites in kelp forests along the central California coast. They found that fish in reserves were larger and that the age of the reserve increased the effect. These studies, together with that by Martell *et al.* (2000) on the movement of lingcod in reserves, suggest that fish density and size increase in reserves and these effects increase with the age of the reserve. However, these temperate studies have had small sample sizes, unexplained mixed results, and relied on comparisons of "fished" and "reserve" sites with either: 1) little or no replication of reserve/non-reserve pairs or 2) across limited time scales.

The purpose of this thesis is to extend the examination of marine reserve effects on nearshore rocky reef fish populations' density and length-frequency distribution in temperate systems. Specifically, this thesis combines two studies. First, a temporal study of a single site at multiple time periods in order to provide a time-series view of marine reserve effects. Second, a spatial study of three pairs of reserve/non-reserve sites for one time period similar to that by Paddack and Estes (2000). In addition, this thesis uses tightly matched pairs of reserve and non-reserve sites to obtain greater study control, gathers a greater number of observations per site to enhance statistical power, and controls for age of reserve by using reserves that were established concurrently.

The first (temporal) study consists of a single permanent transect at one site, with data collected at four time periods from 1974-76 (Moulton 1977), 1987 (Casselle 1987), 1991-92 (S. Miller, unpublished data), and 1999-00 (this study). The site was a non-reserve during the first two time periods and a reserve during the latter two. The protocols for all dive surveys used in the first study were developed by Moulton (1977). The goal of this study was to control for micro-habitat, and so more effectively to isolate the effects of marine reserve status over time. The second (spatial) study consisted of three matched pairs of reserve and non-reserve sites. All data were collected in 2000. The goals of this study were to provide data from six study sites (and thus increase replication of the reserve/non-reserve treatment), increase the number of transects sampled per dive survey (and thus statistical power of analysis), stratify by depth in an attempt to reduce large variance associated with fish counts and resultant population density estimates, collect habitat data for each transect, and collect total length data for every fish sighted. Combined, the temporal and spatial studies should extend previous studies by giving a richer view of the effects of marine reserves.

The research study area is the San Juan Channel. The specific focus is The San Juan Islands Marine Preserves. They were established in 1990, and restrict all forms of fishing except for salmon, herring and in certain areas, crab (Murray 1998). This study area is particularly attractive for this thesis because the three reserves were established at the same time, are in close proximity to one another, have existed for about a decade, and have comparable habitat located outside the reserves for reference sites. The allowed

fishing activity probably has minimal, if any, impact on rocky reef fish. Anglers targeting the two pelagic species have little interaction with rocky reef fish (with the possible exception of minimal bycatch of *O. elongatus, S. melanops and S. flavidus;* K. Koski, San Juan County Bottomfish Recovery Program and Soundwatch, personal communication). Crabs are fished with pots and usually in soft-bottom habitats.

In the first study, data were collected from the Point George reserve site from October 14<sup>th</sup>, 1999 to November 19<sup>th</sup>, 1999 on fish density and year-round from October 14<sup>th</sup>, 1999 to October 20<sup>th</sup>, 2000 on fish lengths. These data are combined with data from previous studies as noted earlier in the longitudinal analysis. In the second study, data were collected from six sites (Point George plus five other sites) from July 27<sup>th</sup>, 2000 to October 5<sup>th</sup>, 2000. The three San Juan Islands Marine Preserves (**SJIMP**s) in San Juan Channel that contain nearshore rocky reef habitat were selected as study sites. These areas are known as: Southwest Shaw Island SJIMP, Friday Harbor-to-Point Caution SJIMP, and Yellow and Low Islands SJIMP. Study sites within these areas were selected as reserve study sites. These sites will be referred to as Point George, Shady Cove and Yellow Island, respectively. Non-reserve sites were selected to pair with each reserve site to provide similar bathymetry, substrate complexity, algal communities, and exposure to kilometer-scale tidal current processes within each reserve/non-reserve pair (Figure 1). The non-reserve sites will be referred to as Neck Point, Turn Island and Jones Island (in order of pairing with reserve site above).



**Figure 1.** Study sites in San Juan Channel. Dashed lines indicate the boundaries of the San Juan Islands Marine Preserves, established by the State of Washington in 1990, which restrict the removal of anything other than salmon, herring, or crab. Reserve study sites are solid areas. Non-reserve study sites are crosshatched. San Juan Island is on the left, Orcas Island top right, and Shaw Island middle right. Units are in kilometers.

Non-reserve sites were chosen to maximize similarity between pairs to provide accurate replication of the reserve treatment. However, there are some subtle differences amongst pairs. Furthermore, each site more closely resembles its paired site than other pairs. This situation could not be avoided. In brief, the Point George / Neck Point pair has gradually sloping with low relief features, the Shady Cove / Turn Island pair has steep drop-off with high relief, and the Yellow Island / Jones Island pair has classic ridge-like reefs extending away from shore. Shady and Turn had abundant bull kelp (*Nereocystis luetkeana*) while Pt. George had some and the other sites had none. A harbor seal (*Phoca vitulina*) haulout was present in the Yellow Island site, and these animals were seen foraging near the Shady Cove and Turn Island sites. Turn and Jones Islands are State Parks, while the land adjacent to the three reserve sites is restricted (Table 1).

Bottomfish angler trips in North Puget Sound peaked during 1980-83, and by 1994, the annual number of trips was down to early 1970's levels (Figure 2). A ten fish bag limit for rockfish was enacted in 1983, and reduced to 5 fish in 1994. The current daily bag limit for rockfish is one fish. In 1992, the lingcod angler season was reduced from seven months to six weeks and minimum / maximum size limits were introduced. Directed commercial fisheries for rockfish using jig and troll gears were prohibited in the San Jeans in 1984 (Palsson *et al.* 1997). Trawling is allowed (outside reserves), but rarely occurs in San Juan Channel, and has resulted in total annual rockfish catches of less than 100 pounds since 1994. No lingcod have been caught commercially during the

| 0  |  |
|----|--|
| ο. |  |

Table 1. Study site profiles.

|               | Bathymetry                                | Bull kelp | Marine mammals                    | Human use        |
|---------------|-------------------------------------------|-----------|-----------------------------------|------------------|
| Point George  | gradual slope, medium relief substrate    | Limited   |                                   | restricted       |
| Neck Point    | gradual slope, medium relief<br>substrate | None      |                                   | private property |
| Shady Cove    | steep, high relief substrate              | Abundant  | harbor seals seen foraging nearby | restricted       |
| Turn Island   | steep, high relief substrate              | Abundant  | harbor seals seen foraging nearby | State park       |
| Yellow Island | reef extending perpendicular from shore   | None      | harbor seal haul out in site      | restricted       |
| Jones Island  | reef extending perpendicular from shore   | None      |                                   | State park       |

 $\infty$ 

9



Figure 2. Number of boat-based bottomfish angler trips in North Sound. From Palsson *et al.* (1997). San Juan Channel is part of the North Sound management area.

last few years (W. Palsson, Washington Department of Fish and Wildlife, personal communication).

The eight target species for which data were collected included five rockfish: copper (Sebastes caurinus), quillback (Sebastes maliger), black (Sebastes melanops), vellowtail (Sebastes flavidus) and Puget Sound (Sebastes emphaeus). The other target species were lingcod (Ophiodon elongatus), kelp greenling (Hexagrammos decagrammus) and striped surfperch (Embiotoca lateralis). These species are distributed over a gradient of susceptibility, a gradient of desirability to local angler effort, and other factors such as size and site-fidelity. For example, lingcod are the most highly prized reef fish and individuals sighted in this study are predominantly males. Although egg nests were seen in the study sites, it appears that females are only present for a short time in which they spawn and leave the nest in the care of the male. Coppers and quillbacks are epi-benthic, demersal species and appear to have high site fidelity and small ( $\sim 30m^2$ ) home ranges. Blacks and yellowtails are meso-pelagic, form aggregations 1-10 meters above the substrate and show substantial movement, often over 100km. Kelp greenling show active movement to underwater observers, but the details and extent of their movement is unknown. Puget Sound rockfish have relatively small maximum size and longevity. They are meso-pelagic forming loose aggregations as well as epi-benthic groups of fewer individuals. Striped surfperch are a schooling species of uneven age structure. Together, these eight species comprise the largest and most conspicuous members of the nearshore rocky reef fish assemblage in San Juan Channel. Therefore, it

should be possible to improve understanding not only effects of marine reserves on the eight species, but also to gain insight into some of the interactions among species. A fortunate byproduct of the second (spatial) study was that sampling occurred during a strong young-of-the-year (**YOY**) recruitment episode. Data concerning spatial and temporal patterns of YOY fishes of the *S. caurinus* and *S. maliger* complex were collected in 2000 and are presented here.

It should be noted that this study surveyed 0-20m depths. The species studied are also known to inhabit deeper waters. In addition, the San Juan Islands Marine Preserves encompass depths greater than the depth range covered by this study. Therefore, these results should not be extrapolated to all depths.

In general, reserves have a positive, direct effect on density and length-frequency distribution of populations that have been increasing over time and are fished. These effects appear to intensify with fishing pressure. Reserves have no direct effect on unfished populations. Reserves have no direct effect on decreasing (over time) and fished populations, although these populations may be maintained by reserves with high substrate complexity. Alternative management measures appear necessary to recover these species. Reserves can have a negative, indirect effect on populations increasing over time if reserves increase the size and/or density of predators.

#### **METHODS AND MATERIALS**

Methods for the first study employed the same permanent leadline transect survey techniques in the same location as used by Moulton (1977). More specifically, visual strip transect surveys were made along 264m of 3/8" leadline. Leadline was attached to the substrate with pitons and tied to pitons around plastic thimbles. Every fish seen was recorded, as well as depth sighted, time sighted, and transect leg (1-4). Width was defined as half the visibility to each side. Visibility was measured by stretching a meter tape between two divers until the point a which a white slate held against black neoprene was just in view. Further details are available in Moulton (1977).

The survey protocol for the second study follows: two observers, utilizing SCUBA, completed visual strip transects in reserve and non-reserve areas of San Juan Channel. The primary diver was equipped with a depth gauge, thermometer, measuring device, and data recording slate with underwater paper and pencil. The measuring device consisted of a meter long section of schedule 40 poly-vinyl chloride marked in 5cm intervals with one end attached to a perpendicularly mounted 30cm acrylic ruler, adapted from Paddack (1996). The secondary diver carried a 25m fiberglass tape, 20ml bottles for water samples, compass, data recording slate, paper and pencil. The start of each transect was randomly chosen from a subset of predetermined GPS coordinates, and bearings to conspicuous shoreline features were noted to provide redundancy if survey locations were to be located in the future. Tide Current Predictor software (Pentcheff 2000) was used to adjust depths for tide height and ensure that depths recorded were consistent with

mean lower low water (**MLLW**). Any human activity in the area, especially fishing type and intensity, was recorded before and after every dive survey.

The two diver-observers entered the water, descended and checked the anchor line, and proceeded via the most direct route 2m off the bottom to a depth of 14m (~46ft). Once there, the primary observer was tethered to the end of the fiberglass tape and the secondary observer took a water sample. Next, while staying 1m above the substrate, the primary observer began moving across the reef slope at the rate of approximately 30 fin strokes per minute. The observers went roughly north or roughly south from the anchor. Which direction was dependent on the flip of a coin, and precise bearings were dependent on bathymetry of the rocky reef. During the transect, the primary observer looked left, right, up, down, and searched boulder piles, crevices and kelp. The secondary observer remained stationary and held onto the tape reel as it unwound. While swimming the transect, the primary observer noted the depth, total length (to nearest cm), and species for all target species encountered within a 2m x 2m x 2m cube centered on the primary observer. Total length was determined by slowly placing the measuring device directly against or beneath the lateral line of the fish in question, or for stationary lingcod by measuring the distance between two points on the substrate denoted by "below the tip of the lower jaw and below the posterior portion of the ventral caudal fin ray" (Martell et al. 2000).

Through practice, the primary observer was able to change depth at a constant slope and end the 25m long transect at a predetermined depth. For example, during the first 25m x 2m x 2m transect the primary observer would start at a depth of 14m and end at a depth of 20m by moving approximately parallel to shore and simultaneously increasing depth as a function of linear distance moved. Therefore, surveys followed a 'zig-zag' pattern, starting a transect at one depth and ending it at another depth about 5m different. Transects alternated increasing depth during the transect with decreasing depth during the transect (Figure 3). Potential bias associated with steering toward/away from fish or particular habitats was avoided by focusing only on the immediate 2m x 2m x 2m cube of the transect, and coupling depth gauge readings with sense of body position in the water to maintain a constant rate of depth change. The width of the transect was widened to 4m after September 5<sup>th</sup>, in an attempt to keep the number of fish sighted per transect constant as densities decreased seasonally.

Depth strata were chosen according to habitat zones. The 0-5m depth range was typically dominated by algal cover including: *Laminaria, Ulva, Rhodophyta* spp., *Sargassum muticum*, and if present, *Nereocystis luetkeana* and/or *Zoestra marina*. For the 5-9m depth strata, all of the above were present, plus *Agarum*. The 9-14m depth strata did not generally contain the dominant species from the 0-5m depth strata, and *Agarum* was dominant in the 9-14m depth strata. The lower limit of algal dominance was observed around 14m and the 14-20m-depth stratum was dominated by invertebrate cover. In



Figure 3. Diagrammatic sketch of 2000 Spatial study SCUBA transect surveys. Figure adapted from Moulton (1977). Depths on right denote bathymetry. Drawing not to scale.

15

addition, the 14-20m depth strata contained the greatest densities of nearshore rocky reef fish.

The secondary observer informed the primary observer when 25m of tape had been let out with three sharp tugs on the tape. Then, it was the primary observer's turn to remain stationary while the secondary observer reeled up the tape and rejoined the primary observer. As the tape was reeled, the secondary observer passed through the same transect and mentally noted habitat characteristics (to be recorded on a data sheet 1-30 seconds later). The secondary observer surveyed the habitat of precisely the same 25m x 2m x 2m transect that the primary observer had just surveyed. Habitat data included: strike and dip of the reef slope, substrate complexity (0=sediment, 1=flat rock, 2=cobble, 3=boulder<1m, 4=boulder>1m and <3m, 5=boulder>3m), substrate percent cover (sediments, bare rock, encrusting animals, macroalgae by species), and abundance of macroinvertebrates (usually seastars and urchins) by species.

When the secondary observer completed reeling, the observers were rejoined and flashed "OK". Then the secondary observer remained stationary (attached to the tape as it unwound) and recorded the data mentally noted during the previous transect while the primary observer continued on the next transect. In this way, waiting time was minimized for both observers and data collection was maximized.

This cycle was repeated 12 times per dive survey, 3 times in each of four depth strata. Therefore, each dive survey consisted of three  $25m \times 2m \times 2m$  transects via zigzags between stratum bounds in each of 4 depth strata, totaling 12 transects or  $600m^2$  of rocky reef habitat surveyed and encompassing all depths from 20m to the surface. Over the duration of the 2000 spatial study, four surveys were completed at each site, totaling 288 transects and 18,000 m<sup>2</sup> surveyed. Depth was corrected for tide height such that depths of all transects over all sites and all surveys were uniform with regard to MLLW.

In summary, this data collection protocol sampled four distinct depth/habitat strata of San Juan Channel nearshore rocky reef, including shallow areas typically inhabited by juveniles and YOY of some species as well as deeper habitats (below the lower limit of greater algal abundance) typically dominated by larger, predatory fish. The protocol provides data for analyses of fish density, which control for microhabitat driven variability in fish abundance. Variance of fish densities per transect can be calculated for each depth stratum of each dive survey. This methodology avoids the often time consuming process of installing permanent leadline transects, and yet can still be used to monitor precisely the same (meter scale) locations on a reef year after year. In addition, it provides adequate sample size (n = 48 transects at each spatial study site) to overcome problems with variance typically associated with visual counts of nearshore rocky reef fish.

Dive survey number, study, site, date, start time, water visibility (m), linear distance surveyed (m), area surveyed (hectares), water salinity at depths of 5m (16ft) and 14m (46 ft), water temperature at 14m (deg C), maximum depth of dive (m), duration of dive (min), tidal current (low, moderate, high), global positioning system (**GPS**) coordinates for anchoring location, approximate direction swam from GPS point, and slack tide time and height for dive surveys were recorded for all dives surveys used in the Point George time series study and the 2000 spatial study (Tables 2-3). Any fishing activity observed before and after 2000 spatial study survey dives was recorded (Table 4).

Sampling was completed during days around quarter moons to minimize tidal current in the study sites and thereby allow back-to-back sampling at each reserve/non-reserve pair on the same slack tide. This was done to make all factors other than reserve/non-reserve treatment as equal as possible. Attempts were made to sample three days in a row during each sampling period, thereby sampling each study site once in a 3-day sampling period. Attempts were made to space sampling periods every two weeks. Due to occasional difficulty coordinating volunteer divers, these attempts were not always successful, and in one case, surveys were made on a 4 wk interval (Table 3).

Beginning September 5<sup>th</sup>, transect width was increased from 2m to 4m in response to declining population densities known to occur seasonally (Moulton 1977). This shift in transect width was done in order to keep the number of individuals of each species sighted on a transect roughly constant for the duration of the study. This methodology

**Table 2.** Physical data from dives used in the Point George time series (Study 1).

| DIVE<br># | STUDY              | SITE     | DATE      | Start<br>time | VIS<br>(m) | DIST<br>(m) | AREA<br>(ha) | Salinity<br>(5m/14<br>m) | Temp<br>(°C) | Max<br>depth<br>(m) | Duration<br>(min) | Current<br>(relative) | Start point (N.<br>Lat., deg-min-<br>sec) | Start point<br>(W. Long.,<br>deg-min-sec) | Direction<br>swam | Tide  | Tide<br>Height<br>(m) |
|-----------|--------------------|----------|-----------|---------------|------------|-------------|--------------|--------------------------|--------------|---------------------|-------------------|-----------------------|-------------------------------------------|-------------------------------------------|-------------------|-------|-----------------------|
| 74535     | Permanent transect | George-N | 8-Oct-74  | 1235          | 6.8        | 250         | 0.1688       |                          | 10.8         | 17                  | 30                | Strong                | North end of 4                            | leg zig-zag                               | NA                | HHIGH | 0.6                   |
| 74538     | Permanent transect | George-N | 30-Oct-74 | 943           | 7          | 250         | 0.1750       | 29.6                     | 10.0         | 17                  | 40                | Slight                | North end of 4                            | leg zig-zag                               | NA                | HLOW  | 0.4                   |
| 74539     | Permanent transect | George-N | 30-Oct-74 | 1041          | 7          | 250         | 0.1750       |                          | 10.0         | 17                  | 26                | Slight                | North end of 4                            | leg zig-zag                               | NA                | flood | 0.5                   |
| 74542     | Permanent transect | George-N | 23-Dec-74 | 1029          | 6.8        | 250         | 0.1688       | 30.2                     | 8.0          | 18                  | 31                | Slight                | North end of 4                            | leg zig-zag                               | NA                | HHIGH | 0.7                   |
| 74543     | Permanent transect | George-N | 23-Dec-74 | 1145          | 6.8        | 250         | 0.1688       |                          | 8.0          | 18                  | 30                | Slight                | north end of 4 l                          | eg zig-zag                                | NA                | HHIGH | 0.7                   |
| 75518     | Permanent transect | George-N | 6-Dec-75  | 1330          | 5          | 253         | 0.1265       |                          | 8.8          | 17                  | 50                | Slight                | north end of 4                            | leg zig-zag                               | NA                | HLOW  | 0.5                   |
| 91521     | Permanent transect | George-N | 22-Oct-91 | 1058          | 9          | 250         | 0.2250       | 27.0                     | 9.5          | 15                  | 48                | Slight                | north end of 4                            | leg zig-zag                               | NA                | HLOW  |                       |
| 91522     | Permanent transect | George-N | 23-Oct-91 | 1140          | 8          | 250         | 0.2000       | 28.0                     |              | 15                  | 54                | Slight                | north end of 4                            | leg zig-zag                               | NA                | HLOW  |                       |
| 91526     | Permanent transect | George-N | 5-Nov-91  | 948           | 9          | 250         | 0.2250       | 27.0                     | 9.0          | 15                  | 60                | Strong                | north end of 4 l                          | eg zig-zag                                | NA                | HLOW  |                       |
| 99501     | Permanent transect | George-N | 14-Oct-99 | 1547          | 7.9        | 264         | 0.209        |                          | 9.5          | 18                  | 45                | None                  | north end of 4 l                          | eg zig-zag                                | NA                |       |                       |
| 91528     | Permanent transect | George-N | 8-Nov-91  | 1219          | 11         | 250         | 0.2750       |                          | 9.5          | 15                  | 53                | Slight                | north end of 4                            | leg zig-zag                               | NA                | HLOW  |                       |
| 91529     | Permanent transect | George-N | 9-Dec-91  | 1425          | 6.5        | 250         | 0.1625       | 26.0                     | 10.0         | 15                  | 50                | None                  | north end of 4                            | leg zig-zag                               | NA                | HLOW  |                       |
| 91531     | Permanent transect | George-N | 13-Dec-91 | 1045          | 7          | 250         | 0.1750       | 26.0                     | 7.4          | 15                  | 45                | Slight                | north end of 4 l                          | eg zig-zag                                | NA                | HHIGH |                       |
| 99505     | Permanent transect | George-N | 7-Nov-99  | 1448          | 6.5        | 264         | 0.1716       |                          | 9.0          | 18                  | 38                | Slight                | north end of 4 l                          | eg zig-zag                                | NA                | HHIGH | 0.7                   |
| 99502     | Permanent transect | George-N | 08-Nov-99 | 1059          | 7.4        | 264         | 0.195        |                          | 8.8          | 21                  | 43                | None                  | north end of 4                            | leg zig-zag                               | NA                |       |                       |
| 99506     | Permanent transect | George-N | 8-Nov-99  | 1058          | 7.4        | 264         | 0.1954       | 27.0                     | 9.0          | 17                  | 42                | None                  | north end of 4                            | leg zig-zag                               | NA                | HLOW  | 0.5                   |
| 99507     | Permanent transect | George-N | 10-Nov-99 | 1235          | 6.8        | 264         | 0.1795       | 28.0                     | 9.0          | 17                  | 43                | Strong                | north end of 4                            | leg zig-zag                               | NA                | HLOW  | 0.5                   |
| 99503     | Permanent transect | George-N | 12-Nov-99 | 1423          | 6.9        | 264         | 0.182        |                          | 8.7          | 20                  | 54                | None                  | north end of 4                            | leg zig-zag                               | NA                |       |                       |
| 99508     | Permanent transect | George-N | 12-Nov-99 | 1422          | 6.9        | 151         | 0.1042       |                          | 9.3          | 17                  | 25                | None                  | north end of 4                            | leg zig-zag                               | NA                | HLOW  | 0.6                   |
| 99509     | Permanent transect | George-N | 14-Nov-99 | 851           | 6.4        | 264         | 0.1690       | 28.0                     | 9.0          | 18                  | 34                | None                  | north end of 4 l                          | eg zig-zag                                | NA                | HHIGH | 0.8                   |
| 99504     | Permanent transect | George-N | 15-Nov-99 | 923           | 5.8        | 264         | 0.153        |                          | 8.7          | 20                  | 49                | Slight                | north end of 4 l                          | eg zig-zag                                | NA                |       |                       |
| 99510     | Permanent transect | George-N | 15-Nov-99 | 922           | 5.8        | 264         | 0.1531       | 28.0                     | 8.8          | 15                  | 46                | Strong                | north end of 4 l                          | eg zig-zag                                | NA                | HHIGH |                       |
| 99512     | Permanent transect | George-N | 19-Nov-99 | 1147          | 6.5        | 264         | 0.1716       | 29.0                     | 8.8          | 18                  | 46                | Slight                | north end of 4 l                          | eg zig-zag                                | NA                | HHIGH | 0.8                   |
|           |                    |          |           |               |            |             |              |                          |              |                     |                   |                       |                                           |                                           |                   |       |                       |

20

**Table 3.** Physical data from dives used in the 2000 spatial study (Study 2).

| DIVE<br># | STUDY   | SITE   | DATE      | Start<br>time | VIS<br>(m) | DIST<br>(m) | AREA<br>(ha) | Salinity<br>(5m/14<br>m) | Temp<br>(°C) | Max<br>depth<br>(m) | Duration<br>(min) | Current<br>(relative) | Start point (N.<br>Lat., deg-min-<br>sec) | Start point (W.<br>Long., deg-min-<br>sec) | Direction<br>swam | Tide      | Tide<br>Height<br>(m) |
|-----------|---------|--------|-----------|---------------|------------|-------------|--------------|--------------------------|--------------|---------------------|-------------------|-----------------------|-------------------------------------------|--------------------------------------------|-------------------|-----------|-----------------------|
| 501       | Spatial | Turn   | 25-Jul-00 | 1315          | 8          | 250         | 0.05         | 28/30                    | 10.2         | 21                  | 56                | none                  | white sign on he                          | eadland                                    | north             | high 1359 | 1.4                   |
| 502       | Spatial | Shady  | 25-Jul-00 | 1515          | 7          | 250         | 0.05         | 28/30                    |              | 20                  | 59                | slight                | mooring                                   |                                            | north             | high 1359 | 1.4                   |
| 503       | Spatial | Yellow | 26-Jul-00 | 1430          | 5          | 250         | 0.05         | 28/28                    | 10.3         | 21                  | 53                | slight                | 48, 35, 24.7                              | 123, 1, 57.2                               | south             | high 1537 | 1.7                   |
| 504       | Spatial | Jones  | 26-Jul-00 | 1635          | 6          | 250         | 0.05         | 28/28                    | 10.4         | 19                  | 61                | none                  | 48, 36, 40.0                              | 123, 2, 39.9                               | south             | high 1537 | 1.7                   |
| 505       | Spatial | George | 27-Jul-00 | 1610          | 6          | 250         | 0.05         | 29/28                    | 10           | 20                  | 56                | slight                | 48, 33, 34.5                              | 122, 59, 12.1                              | south             | high 1643 | 2.0                   |
| 506       | Spatial | Neck   | 27-Jul-00 | 1847          | 5          | 250         | 0.05         | 28/28                    | 10           | 20                  | 54                | slight                | 48, 34, 50.9                              | 123, 00, 57.1                              | south             | high 1643 | 2.0                   |
| 507       | Spatial | George | 31-Jul-00 | 1200          | 5          | 250         | 0.05         | 29/28                    | 9.8          | 20                  | 59                | strong                | 48, 33, 28.1                              | 122, 59, 07.7                              | north             | low 1130  | -0.8                  |
| 508       | Spatial | Neck   | 02-Aug-00 | 1315          | 3          | 150         | 0.03         |                          | 10.8         | 20                  | 32                | strong                | 48, 34, 46.9                              | 122, 00, 47.9                              | north             | low 1301  | -0.4                  |
| 509       | Spatial | Neck   | 03-Aug-00 | 1400          | 3          | 100         | 0.02         | 25/27                    | 12.6         | 16                  | 24                | none                  | 48, 34, 46.10                             | 122, 00, 47.10                             | north             | low 1345  | 0.0                   |
| 510       | Spatial | Yellow | 22-Aug-00 | 1156          | 7          | 250         | 0.05         |                          | 10.4         | 20                  | 52                | none                  | 48, 35, 24.2                              | 123, 01, 57.7                              | south             | high 1205 | 1.6                   |
| 511       | Spatial | Jones  | 22-Aug-00 | 1334          | 7          | 250         | 0.05         | 29/28                    | 10.3         | 20                  | 45                | slight                | 48, 36, 39.3                              | 123, 02, 40.8                              | south             | high 1205 | 1.6                   |
| 512       | Spatial | Turn   | 23-Aug-00 | 1310          | 8          | 250         | 0.05         | 28/28                    | 10.3         | 21                  | 53                | none                  | 48, 32, 05.1                              | 122, 58, 05.4                              | north             | high 1355 | 1.7                   |
| 513       | Spatial | Shady  | 23-Aug-00 | 1500          | 7          | 250         | 0.05         |                          | 10.4         | 20                  | 49                | strong                | 48, 33, 11.6                              | 123, 00, 19.0                              | south             | high 1355 | 1.7                   |
| 514       | Spatial | Neck   | 24-Aug-00 | 1240          | 7          | 250         | 0.05         | 29/29                    | 10.3         | 21                  | 54                | slight                | 48, 34, 46.5                              | 123, 00, 46.0                              | north             | high 1520 | 1.9                   |
| 515       | Spatial | George | 24-Aug-00 | 1410          | 7          | 250         | 0.05         | ??/29                    | 10.3         | 21                  | 49                | none                  | 48, 33, 35.4                              | 122, 59, 15.0                              | north             | high 1520 | 1.9                   |
| 516       | Spatial | George | 05-Sep-00 | 1200          |            | 250         | 0.1          | 29/29                    | 10.5         | 20                  | 45                | slight                | 48, 33, 28.9                              | 122, 59, 07.8                              | south             | high 1302 | 1.9                   |
| 517       | Spatial | Neck   | 05-Sep-00 | 1350          | 7          | 250         | 0.1          | 29/29                    | 10.6         | 19                  | 46                | none                  | 48, 34, 47.8                              | 123, 00, 45.6                              | south             | high 1302 | 1.9                   |
| 518       | Spatial | Turn   | 06-Sep-00 | 1350          | 8          | 250         | 0.1          | 27.5/28                  | 10.5         | 20                  | 54                | none                  | 48, 32, 05.1                              | 122, 58, 05.6                              | south             | high 1429 | 2.0                   |
| 519       | Spatial | Shady  | 06-Sep-00 | 1540          | 8          | 250         | 0.1          | 29/28.5                  | 10.7         | 22                  | 50                | slight                | 48, 33, 07.7                              | 123, 00, 15.2                              | north             | high 1429 | 2.0                   |
| 520       | Spatial | Yellow | 08-Sep-00 | 1355          |            | 250         | 0.1          |                          | 10.4         | 21                  | 46                | none                  | 48, 35, 24.3                              | 123, 01, 57.1                              | south             | high 1616 | 2.2                   |
| 521       | Spatial | Jones  | 08-Sep-00 | 1515          |            | 250         | 0.1          |                          | 10.7         | 20                  | 43                | slight                | 48, 36, 39.2                              | 123, 02, 39.9                              | south             | high 1616 | 2.2                   |
| 522       | Spatial | Jones  | 04-Oct-00 | 1630          |            | 250         | 0.1          |                          | 10.2         | 21                  | 51                | none                  | 48, 36, 39.5                              | 123, 02, 40.5                              | south             |           |                       |
| 523       | Spatial | Yellow | 04-Oct-00 | 1750          |            | 250         | 0.1          |                          | 10.4         | 22                  | 37                | strong                | 48, 35, 24.4                              | 123, 01, 59.0                              | south             |           |                       |
| 524       | Spatial | Turn   | 05-Oct-00 | 1320          |            | 250         | 0.1          |                          | 10.2         | 20                  | 45                | slight                | white sign on he                          | eadland                                    | south             |           |                       |
| 525       | Spatial | Shady  | 05-Oct-00 | 1500          |            | 250         | 0.1          |                          | 10.2         | 22                  | 52                | none                  | mooring                                   |                                            | south             |           |                       |
| DIVE # | STUDY   | SITE   | DATE      | Start<br>time | Start point (N.<br>Lat., deg-min-<br>sec) | Start point (W.<br>Long., deg-min-<br>sec) | Fishing<br>before<br>dive | Fishing after dive                                |
|--------|---------|--------|-----------|---------------|-------------------------------------------|--------------------------------------------|---------------------------|---------------------------------------------------|
| 501    | Spatial | Turn   | 25-Jul-00 | 1315          | white sign on he                          | adland                                     | 0                         | 2 caurinus speared                                |
| 502    | Spatial | Shady  | 25-Jul-00 | 1515          | mooring                                   |                                            | 0                         | 0                                                 |
| 503    | Spatial | Yellow | 26-Jul-00 | 1430          | 48, 35, 24.7                              | 123, 1, 57.2                               | 0                         | 0                                                 |
| 504    | Spatial | Jones  | 26-Jul-00 | 1635          | 48, 36, 40.0                              | 123, 2, 39.9                               | 0                         | 2 lines, salmon troller                           |
| 505    | Spatial | George | 27-Jul-00 | 1610          | 48, 33, 34.5                              | 122, 59, 12.1                              | 3 lines                   | 0                                                 |
| 506    | Spatial | Neck   | 27-Jul-00 | 1847          | 48, 34, 50.9                              | 123, 00, 57.1                              | 0                         | 2 caurinus speared 30 cm and 27 cm                |
| 507    | Spatial | George | 31-Jul-00 | 1200          | 48, 33, 28.1                              | 122, 59, 07.7                              | 0                         | 0                                                 |
| 508    | Spatial | Neck   | 02-Aug-00 | 1315          | 48, 34, 46.9                              | 122, 00, 47.9                              | 0                         | 0                                                 |
| 509    | Spatial | Neck   | 03-Aug-00 | 1400          | 48, 34, 46.10                             | 122, 00, 47.10                             | 0                         | 0                                                 |
| 510    | Spatial | Yellow | 22-Aug-00 | 1156          | 48, 35, 24.2                              | 123, 01, 57.7                              | 0                         | 0                                                 |
| 511    | Spatial | Jones  | 22-Aug-00 | 1334          | 48, 36, 39.3                              | 123, 02, 40.8                              | 0                         | 20' power boat w/ 1 jig heading west              |
| 512    | Spatial | Turn   | 23-Aug-00 | 1310          | 48, 32, 05.1                              | 122, 58, 05.4                              | 0                         | 0                                                 |
| 513    | Spatial | Shady  | 23-Aug-00 | 1500          | 48, 33, 11.6                              | 123, 00, 19.0                              | 0                         | 0                                                 |
| 514    | Spatial | Neck   | 24-Aug-00 | 1240          | 48, 34, 46.5                              | 123, 00, 46.0                              | 0                         | 0                                                 |
| 515    | Spatial | George | 24-Aug-00 | 1410          | 48, 33, 35.4                              | 122, 59, 15.0                              | 0                         | 0                                                 |
| 516    | Spatial | George | 05-Sep-00 | 1200          | 48, 33, 28.9                              | 122, 59, 07.8                              | 0                         | 0                                                 |
| 517    | Spatial | Neck   | 05-Sep-00 | 1350          | 48, 34, 47.8                              | 123, 00, 45.6                              | 0                         | found buzz bomb lure at 56' on leg 3              |
| 518    | Spatial | Turn   | 06-Sep-00 | 1350          | 48, 32, 05.1                              | 122, 58, 05.6                              | 0                         | 2 small boats/skiffs, 1 fishing on rocks to south |
| 519    | Spatial | Shady  | 06-Sep-00 | 1540          | 48, 33, 07.7                              | 123, 00, 15.2                              | 0                         | 0                                                 |
| 520    | Spatial | Yellow | 08-Sep-00 | 1355          | 48, 35, 24.3                              | 123, 01, 57.1                              | 0                         | 0                                                 |
| 521    | Spatial | Jones  | 08-Sep-00 | 1515          | 48, 36, 39.2                              | 123, 02, 39.9                              | 0                         | 0                                                 |
| 522    | Spatial | Jones  | 04-Oct-00 | 1630          | 48, 36, 39.5                              | 123, 02, 40.5                              | 0                         | 0                                                 |
| 523    | Spatial | Yellow | 04-Oct-00 | 1750          | 48, 35, 24.4                              | 123, 01, 59.0                              | 0                         | 0                                                 |
| 524    | Spatial | Turn   | 05-Oct-00 | 1320          | white sign on he                          | adland                                     | 0                         | 0                                                 |
| 525    | Spatial | Shady  | 05-Oct-00 | 1500          | mooring                                   |                                            | 0                         | 0                                                 |

**Table 4.** Fishing activity observed before and after dives used in the 2000 spatial study (Study 2).

change was incorporated into population density estimates, i.e. surveys after September  $5^{\text{th}}$  had twice the area swept compared to previous surveys.

Transects 7 & 8 were excluded from data analysis due to potential bias from possible double counting. The protocol used in the spatial study called for the observers to double back to the boat beginning with transect 6. Despite the fact that different depth strata were sampled for transects 5 & 6 versus 7 & 8, the corners of these transects surveyed the same locations. 7 & 8 were excluded from analysis because 5 & 6 were always sampled before 7 & 8. However, 7 & 8 were not excluded from YOY *Sebastes caurinus / Sebastes maliger* complex data, as it was possible to remove the one instance of double counting for these fish with certainty of no additional error. Aggregations of YOY *Sebastes caurinus / Sebastes maliger* complex were observed not to move more than a meter or show immigration or emigration during any dive survey. Double counting between sampling periods was unlikely since different starting locations were used for each dive survey.

#### RESULTS

Results are presented in six sections. The first two sections relate to the first study: 1) population densities for the Point George North permanent leadline transect over time (1974-76, 1991, 1999), and 2) length-frequencies from the Point George North permanent leadline transect over time (1974-76, 1987, 1991-92, 2000). The next four sections relate to the second study, the 2000 spatial study. They include: 3) comparison of substrate complexity, rocky reef slope angle and observed fishing activity between spatial study sites, 4) population densities for all six spatial study sites, as well as between grouped reserves and non-reserves by sampling period, depth stratum, and all times and depths grouped, 5) length-frequency distributions comparisons among each spatial study reserve/non-reserve pair, as well as grouped reserve sites versus grouped non-reserve sites, and specimens collected from the region during 1974-76 for food analysis (Moulton 1997, Appendix 1-B), and 6) YOY length-frequencies and population densities for 2000 spatial study sites by sampling date and all sampling dates grouped.

#### Population densities at the Point George study site over time

In this section, the population density for each species is compared over time. Data from three time periods (1974-76, 1991, and 1999) collected at the Point George North zig-zag transect site were compared using Kruskal-Wallace single factor analysis of variance by ranks. All data were collected during October, November or December. Data from 1987 (Caselle) were not used since they were collected in August and population densities are known to fluctuate seasonally (Moulton, 1977). For each species, H<sub>0</sub>: population density has remained constant over time, and H<sub>A</sub>: population density has changed over time.

Population densities of *S. caurinus*, *H. decagrammus* and *S. emphaeus* have increased overtime (p < 0.05, p = 0.005 and p < 0.005, respectively). Population densities of *S. flavidus*, *S. melanops* and *S. maliger* have decreased overtime (p < 0.01, p < 0.01and p < 0.05, respectively). In addition, these three species were not sighted at Point George in 1999, and only *S. maliger* were sighted in 1991. Population density of *O. elongatus* changed significantly over time (p < 0.05), increased since reserve formation. Data are insufficient for striped surfperch (*E. lateralis*) to compute density (Figure 4).

#### Length-frequency distributions at the Point George study site over time

In this section, the length-frequency data are compared for four time periods (1974-76, 1987, 1991-92, 1999-2000) at the Point George North leadline transect. Total lengths were collected in 2000, but not in 1999. In 1999, four length classes were used.

Results are grouped by season: January-March, April-June, July-September and October-December. Total length (to nearest cm) data from all time periods were compared using 4x1 ANOVA. For each species, H<sub>0</sub>: total lengths have remained constant over time, and H<sub>A</sub>: total lengths have changed over time. Next, all pair wise combinations of time periods were examined. First, by a two sample F-test for variance, H<sub>0</sub>: the



**Figure 4.** Population densities at Point George overtime. All data collected during the fall (Oct-Dec) for 1974-76, 1991 and 1999. Sample size is the number of transects completed during each time period. Kruskal-Wallace nonparametric statistics were used to compute p-values. Error bars are standard errors.



**Figure 4 (cont).** Population densities at Point George overtime. All data collected during the fall (Oct-Dec) for 1974-76, 1991 and 1999. Sample size is the number of transects completed during each time period. Kruskal-Wallace nonparametric statistics were used to compute p-values. Error bars are standard errors.



**Figure 4 (cont).** Population densities at Point George overtime. All data collected during the fall (Oct-Dec) for 1974-76, 1991 and 1999. Sample size is the number of transects completed during each time period. Kruskal-Wallace nonparametric statistics were used to compute p-values. Error bars are standard errors.

variances of total lengths from the two time periods are equal, and  $H_A$ : the variances of total lengths from the two time periods are unequal. This test was followed by the appropriate two sample t-test (i.e. for equal or unequal variance),  $H_0$ : total lengths between two time periods are equal, and  $H_A$ : total lengths between two time periods are unequal. Other summary statistics for each time period, season and species were computed, including: number of fish, mean total length, variance, minimum length, maximum length, and percent of individuals larger than length at 50% maturity for males and females.

Results are presented in categories determined by results of the population densities over time. First, the three species with increasing population density over time and an increased rate of increase after reserve implementation, *S. caurinus, H. decagrammus* and *S. emphaeus*. Next, the three species which decreased and/or disappeared over time, *S. flavidus, S. melanops* and *S. maliger*, followed by the species which recovered over time, *O. elongatus*. For each species, analysis was done for each season. Order of results is winter, spring, summer, and fall.

For *S. caurinus*, total lengths have generally changed significantly over time (ANOVA: p < 0.001, p < 0.01, p < 0.05 and ns for winter, spring, summer and fall, respectively). Specifically, the before-reserve total lengths (1970's-1987 or 1992) generally increased, however results had mixed significance (t-test: p < 0.001, ns, p < 0.001, ns) and for summer data, the significant change in total length before reserve (1970's-1987) was a decrease (t-test: p < 0.001). The since-reserve lengths (1992-2000)

have decreased in all four seasons (t-test: p = 0.003, p = 0.002, p = 0.014, p = 0.019) (Figures 5-8, Tables 5-8). Combined with prior analysis, population density of *S*. *caurinus* was increasing before reserve status and the rate of increase accelerated after reserve status. In contrast, length has showed mixed trends before reserves were implemented and decreased since.

For *H. decagrammus*, overall ANOVAs were significant for summer and fall (ANOVA: p < 0.0001, p < 0.05) but not for winter or spring. Before reserves were implemented, total length had mixed, mostly non-significant trends. Total length decreased in winter and fall (t-test: ns, ns) and increased in spring and summer (t-test: ns, p < 0.001). The since-reserve lengths have increased for winter, spring and fall (t-test: ns, ns, p < 0.05) and decreased for summer (t-test: ns) (Figures 9-12, Tables 9-12). Combined with the first analysis, the density of *H. decagrammus* was significantly increasing before reserve status and accelerated after reserve implementation. In contrast, length has generally remained statistically unchanged.



No data available for 1987



**Figure 5.** Winter length-frequency distributions of copper rockfish (*S. caurinus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 5.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for copper rockfish (*S. caurinus*) on the Point George permanent leadline transect in winter (January-March).

# ANOVA: Single Factor **WINTER** S. caurinus

| Groups                 | Count    | Sum    | Average  | Variance | Min            | Max    |
|------------------------|----------|--------|----------|----------|----------------|--------|
| 1974-76                | 10       | 279.08 | 27.908   | 7.815107 | 25             | 31     |
| 1991-92                | 21       | 702    | 33.42857 | 15.25714 | 25             | 41     |
| 1999-2000              | 11       | 255    | 23.18182 | 73.36364 | 15             | 40     |
| ANOVA                  |          |        |          |          |                |        |
| Source of<br>Variation | SS       | df     | MS       | F        | <i>P-value</i> | F crit |
| Between Groups         | 788.3624 | 2      | 394.1812 | 13.86066 | 2.84E-05       | 3.2381 |
| Within Groups          | 1109.115 | 39     | 28.43885 |          | ***            |        |
| Total                  | 1897.478 | 41     |          |          |                |        |

### F-Test Two-Sample for Variance

Total length (cm)

| Total length (em) |         |         |           |
|-------------------|---------|---------|-----------|
| S. caurinus       | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | Х       | 0.303   | 0.002     |
| 1991-92           |         | Х       | 0.003     |
| 1999-2000         | **      | **      | Х         |

t-Test: Two-

## Sample

| Total length (cm) |         |         |           |
|-------------------|---------|---------|-----------|
| S. caurinus       | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | Х       | 0.000   | 0.108     |
| 1991-92           | ***     | Х       | 0.003     |
| 1999-2000         |         | **      | Х         |

| Length (and age) a                 | Males<br>25cm<br>Ricl | (6yr)<br>hards and | females<br>25cm<br>1 Cass (1986) | (6yr) |  |  |
|------------------------------------|-----------------------|--------------------|----------------------------------|-------|--|--|
| % Mature: Assuming 50:50 sex ratio |                       |                    |                                  |       |  |  |
| S. caurinus                        | 1974-76               | 1991-92            | 1999                             | -2000 |  |  |
| Males                              | 76                    | 100                |                                  | 52    |  |  |
| Females                            | 76                    | 100                |                                  | 52    |  |  |







**Figure 6.** Spring length-frequency distributions of copper rockfish (*S. caurinus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 6.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for copper rockfish (*S. caurinus*) on the Point George permanent leadline transect in spring (April-June).

| ANOVA: Single Fac<br>SPRING S. caurinu<br>SUMMARY | ctor<br>s |        |          |          |          |          |
|---------------------------------------------------|-----------|--------|----------|----------|----------|----------|
| Groups                                            | Count     | Sum    | Average  | Variance | Min      | Max      |
| 1974-76                                           | 30        | 891.19 | 29.70633 | 51.49653 | 10       | 37       |
| 1991-92                                           | 29        | 905    | 31.2069  | 66.66995 | 13       | 43       |
| 1999-2000                                         | 22        | 524    | 23.81818 | 52.91775 | 15       | 40       |
| ANOVA                                             |           |        |          |          |          |          |
| Source of Variation                               | SS        | df     | MS       | F        | P-value  | F crit   |
| Between Groups                                    | 736.6887  | 2      | 368.3444 | 6.425429 | 0.002611 | 3.113797 |
| Within Groups                                     | 4471.431  | 78     | 57.32604 |          | **       |          |
| Total                                             | 5208.12   | 80     |          |          |          |          |

# F-Test Two-Sample for Variance

Total length (cm)

| rotar tengen (em) |         |         |           |
|-------------------|---------|---------|-----------|
| S. caurinus       | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | Х       | 0.493   | 0.930     |
| 1991-92           |         | Х       | 0.591     |
| 1999-2000         |         |         | Х         |
|                   |         |         |           |

# t-Test: Two-Sample

Females

| Total length (cm) |         |         |           |
|-------------------|---------|---------|-----------|
| S. caurinus       | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | Х       | 0.456   | 0.005     |
| 1991-92           |         | Х       | 0.002     |
| 1999-2000         | **      | **      | Х         |

88

|                     |              |         | males   |               | females |  |
|---------------------|--------------|---------|---------|---------------|---------|--|
| Length (and age) at | ity:         | 25cm    | (6yr)   | 25cm          | (6yr)   |  |
|                     |              | Rich    | ards an | d Cass (1986) |         |  |
| % Mature: Assumin   | ng 50:50 sex | ratio   |         |               |         |  |
| S. caurinus         | 1974-76      | 1991-92 | 1999-2  | 2000          |         |  |
| Males               | 88           | 84      |         | 63            |         |  |

84



**Figure 7.** Summer length-frequency distributions of copper rockfish (*S. caurinus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 7.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for copper rockfish (*S. caurinus*) on the Point George permanent leadline transect in summer (July-September).

#### ANOVA: Single Factor SUMMER S. caurinus SUMMARY

| SUMMARY                |              |          |          |            |          |          |
|------------------------|--------------|----------|----------|------------|----------|----------|
| Groups                 | Count        | Sum      | Average  | Variance   | Min      | Max      |
| 1974-76                | 76           | 2182.43  | 28.71618 | 32.39016   | 12       | 35       |
| 1987                   | 443          | 11471    | 25.89391 | 67.73759   | 10       | 51       |
| 1991-92                | 34           | 938      | 27.58824 | 16.85561   | 20       | 38       |
| 1999-2000              | 21           | 508      | 24.19048 | 33.8619    | 13       | 38       |
| ANOVA                  |              |          |          |            |          |          |
| Source of<br>Variation | SS           | df       | MS       | F          | P-value  | F crit   |
| Between Groups         | 666.5988     | 3        | 222.1996 | 3.769149   | 0.01066  | 2.620538 |
| Within Groups          | 33602.75     | 570      | 58.95219 |            | *        |          |
| Total                  | 34269.35     | 573      |          |            |          |          |
| F-Test Two-Samp        | le for Varia | nce      |          |            |          |          |
| Total length (cm)      |              |          |          |            |          |          |
| S. caurinus            | 1974-76      | 1987     | 1991-92  | 2000       | 1        |          |
| 1974-76                | X            | 0.000    | 0.043    | 0.829      |          |          |
| 1987                   | ***          | Х        | 0.000    | 0.065      |          |          |
| 1991-92                | * *          | ***      | Х        | 0.074      |          |          |
| 2000                   |              |          |          | Х          |          |          |
| t-Test: Two-           |              |          |          |            |          |          |
| Sample                 |              |          |          |            |          |          |
| Total length (cm)      |              |          |          |            |          |          |
| S. caurinus            | 1974-76      | 1987     | 1991-92  | 2000       |          |          |
| 1974-76                | X            | 0.000    | 0.215    | 0.002      |          |          |
| 1987                   | ***          | Х        | 0.041    | 0.349      |          |          |
| 1991-92                | ,            | *        | Х        | 0.014      |          |          |
| 2000                   | **           |          | *        | Х          |          |          |
|                        |              |          | males    |            | females  |          |
| Length (and age)       | at 50% matu  | ırity:   | 25cm (   | 6yr)       | 25cm     | (6yr)    |
|                        |              |          | Richard  | ds and Cas | s (1986) |          |
| % Mature: Assum        | ing 50:50 se | ex ratio |          |            |          |          |
| S. caurinus            | 1974-76      | 1987     | 1991-92  | 2000       |          |          |
| Males                  | 83           | 61       | 82       | 55         |          |          |
| Females                | 83           | 61       | 82       | 55         |          |          |



No data available for 1987



**Figure 8.** Spring length-frequency distributions of copper rockfish (*S. caurinus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 8.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for copper rockfish (*S. caurinus*) on the Point George permanent leadline transect in fall (October-December).

| ANOVA: Single Fac                       | ctor       |         |           |          |                |         |
|-----------------------------------------|------------|---------|-----------|----------|----------------|---------|
| FALL S. caurinus                        |            |         |           |          |                |         |
| SUMMARY                                 |            |         |           |          |                |         |
| Groups                                  | Count      | Sum     | Average   | Variance | Min            | Max     |
| 1974-76                                 | 8          | 233.99  | 29.24875  | 62.3203  | 13             | 35      |
| 1991-92                                 | 36         | 1121    | 31.13889  | 14.86587 | 23             | 43      |
| 1999-2000                               | 47         | 1374    | 29.23404  | 11.35708 | 17             | 36      |
| ANOVA                                   |            |         |           |          |                |         |
| Source of Variation                     | SS         | df      | MS        | F        | <i>P-value</i> | F crit  |
| Between Groups                          | 78.77272   | 2       | 39.38636  | 2.343517 | 0.101953       | 3.10007 |
| Within Groups                           | 1478.973   | 88      | 16.80651  |          |                |         |
| Total                                   | 1557.746   | 90      |           |          |                |         |
| F-Test Two-Sample<br>Total length (cm)  | for Varian | ce      |           |          |                |         |
| S. caurinus                             | 1974-76    | 1991-92 | 1999-2000 |          |                |         |
| 1974-76                                 | Х          | 0.004   | 0.000     |          |                |         |
| 1991-92                                 | **         | Х       | 0.389     |          |                |         |
| 1999-2000                               | ***        |         | Х         |          |                |         |
| t-Test: Two-Sample<br>Total length (cm) |            |         |           |          |                |         |
| с ·                                     | 107476     | 1001 03 | 1000 2000 |          |                |         |

| Total length (em) |         |         |           |
|-------------------|---------|---------|-----------|
| S. caurinus       | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | Х       | 0.528   | 0.996     |
| 1991-92           |         | Х       | 0.019     |
| 2000              |         | *       | Х         |

82

Females

| Length (and age) at 50% maturity: |             | ity:    | males<br>25cm | (6y   | vr)      | females<br>25cm | (6yr) |
|-----------------------------------|-------------|---------|---------------|-------|----------|-----------------|-------|
|                                   |             |         | Rich          | nards | and Cass | (1986)          |       |
| % Mature: Assuming                | g 50:50 sex | k ratio |               |       |          |                 |       |
| S. caurinus                       | 1974-76     | 1991-92 | 1999-2        | 2000  |          |                 |       |
| Males                             | 82          | 94      |               | 96    |          |                 |       |

94







**Figure 9.** Winter length-frequency distributions of kelp greenling (*H. decagrammus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 9.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for kelp greenling (*H. decagrammus*) on the Point George permanent leadline transect in winter (January-March).

ANOVA: Single Factor **WINTER** *H. decagrammus* SUMMARY

| Groups    | Count | Sum      | Average  | Variance | Min | Max |
|-----------|-------|----------|----------|----------|-----|-----|
| 1974-76   | 19    | 685.9592 | 36.10312 | 64.1174  | 13  | 42  |
| 1991-92   | 33    | 1088     | 32.9697  | 37.2178  | 23  | 43  |
| 1999-2000 | 13    | 450      | 34.61538 | 97.75641 | 25  | 50  |

ANOVA

| Source of Variation | SS       | df | MS       | F        | <i>P-value</i> | F crit  |
|---------------------|----------|----|----------|----------|----------------|---------|
| Between Groups      | 120.9945 | 2  | 60.49727 | 1.066134 | 0.350564       | 3.14526 |
| Within Groups       | 3518.16  | 62 | 56.74451 |          |                |         |
| Total               | 3639.154 | 64 |          |          |                |         |

#### F-Test Two-Sample for Variance

Total length (cm)

| S. caurinus | 1974-76 | 1991-92 | 1999-2000 |
|-------------|---------|---------|-----------|
| 1974-76     | Х       | 0.175   | 0.406     |
| 1991-92     |         | Х       | 0.029     |
| 1999-2000   |         | *       | Х         |

## t-Test: Two-Sample

females

| Total length (cm) |         |         |           |
|-------------------|---------|---------|-----------|
| S. caurinus       | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | Х       | 0.118   | 0.642     |
| 1991-92           |         | Х       | 0.584     |
| 1999-2000         |         |         | Х         |

91

| Length (and age) at 50% maturity: |             | ity:    | males<br>29.5cm | (3-4yr)<br>Rothrock | females<br>29.5cm<br>(1973) | (3-4yr) |
|-----------------------------------|-------------|---------|-----------------|---------------------|-----------------------------|---------|
| % Mature: Assuming                | g 50:50 sez | x ratio |                 | _                   |                             |         |
| S. caurinus                       | 1974-76     | 1991-92 | 1999-2000       |                     |                             |         |
| males                             | 91          | 73      | 56              | -                   |                             |         |

73







**Figure 10.** Spring length-frequency distributions of kelp greenling (*H. decagrammus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 10.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for kelp greenling (*H. decagrammus*) on the Point George permanent leadline transect in spring (April-June).

ANOVA: Single Factor **SPRING** *H. decagrammus* SUMMARY

| Groups              | Count    | Sum      | Average  | Variance | Min            | Max     |
|---------------------|----------|----------|----------|----------|----------------|---------|
| 1974-76             | 31       | 1066.576 | 34.40568 | 45.54452 | 15             | 42      |
| 1991-92             | 33       | 1180     | 35.75758 | 40.68939 | 23             | 48      |
| 1999-2000           | 20       | 770      | 38.5     | 60.78947 | 25             | 50      |
|                     |          |          |          |          |                |         |
| ANOVA               |          |          |          |          |                |         |
| Source of Variation | SS       | df       | MS       | F        | <i>P-value</i> | F crit  |
| Between Groups      | 205.0809 | 2        | 102.5405 | 2.172356 | 0.120501       | 3.10930 |
| -                   |          |          |          |          |                | 7       |
| Within Groups       | 3823.396 | 81       | 47.20242 |          |                |         |
| _                   |          |          |          |          |                |         |
| Total               | 4028.477 | 83       |          |          |                |         |

F-Test Two-Sample for Variance

Total length (cm)

| 6              |         |         |           |
|----------------|---------|---------|-----------|
| H. decagrammus | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76        | Х       | 0.753   | 0.467     |
| 1991-92        |         | Х       | 0.308     |
| 1999-2000      |         |         | Х         |

#### t-Test: Two-Sample Total length (cm)

| Total length (cm) |         |         |           |
|-------------------|---------|---------|-----------|
| H. decagrammus    | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | Х       | 0.413   | 0.052     |
| 1991-92           |         | Х       | 0.169     |
| 1999-2000         |         |         | Х         |

| Length (and age) at 5 | ength (and age) at 50% maturity: |  | females<br>(3-4yr) 29.5cm (3-4y<br>Pathroals (1072) |        |  |  |
|-----------------------|----------------------------------|--|-----------------------------------------------------|--------|--|--|
| % Mature: Assuming    | g 50:50 sex ratio                |  | Rothrock                                            | (1973) |  |  |
|                       |                                  |  | _                                                   |        |  |  |

| H. decagrammus | 1974-76 | 1991-92 | 1999-2000 |
|----------------|---------|---------|-----------|
| Males          | 86      | 82      | 83        |
| Females        | 86      | 82      | 83        |



**Figure 11.** Summer length-frequency distributions of kelp greenling (*H. decagrammus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 11.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for kelp greenling (*H. decagrammus*) on the Point George permanent leadline transect in summer (July-September).

ANOVA: Single Factor SUMMER *H. decagrammus* SUMMARY

| SUMMARY                                 |            |          |                 |                     |                             |          |
|-----------------------------------------|------------|----------|-----------------|---------------------|-----------------------------|----------|
| Groups                                  | Count      | Sum      | Average         | Variance            | Min                         | Max      |
| 1974-76                                 | 56         | 1822.464 | 32.54401        | 77.11773            | 10                          | 48       |
| 1987                                    | 35         | 1636     | 46.74286        | 199.5496            | 30                          | 76       |
| 1991-92                                 | 17         | 503      | 29.58824        | 35.00735            | 20                          | 41       |
| 1999-2000                               | 15         | 435      | 29              | 32                  | 22                          | 40       |
| ANOVA                                   |            |          |                 |                     |                             |          |
| Source of Variation                     | SS         | df       | MS              | F                   | P-value                     | F crit   |
| Between Groups                          | 6133.969   | 3        | 2044.656        | 20.21842            | 1.17E-10                    | 2.680807 |
| Within Groups                           | 12034.28   | 119      | 101.1284        |                     | ***                         |          |
| Total                                   | 18168.25   | 122      |                 |                     |                             |          |
| F-Test Two-Sample fo                    | r Variance |          |                 |                     |                             |          |
| Total length (cm)                       |            |          |                 |                     |                             |          |
| H. decagrammus                          | 1974-76    | 1987     | 1991-92         | 2000                |                             |          |
| 1974-76                                 | X          | 0.002    | 0.083           | 0.073               | •                           |          |
| 1987                                    | **         | Х        | 0.001           | 0.001               |                             |          |
| 1991-92                                 |            | **       | Х               | 0.874               |                             |          |
| 2000                                    |            | **       |                 | Х                   |                             |          |
| t-Test: Two-Sample<br>Total length (cm) |            |          |                 |                     |                             |          |
| H. decagrammus                          | 1974-76    | 1987     | 1991-92         | 2000                |                             |          |
| 1974-76                                 | X          | 0.000    | 0.198           | 0.144               | •                           |          |
| 1987                                    | ***        | Х        | 0.000           | 0.000               |                             |          |
| 1991-92                                 |            | ***      | Х               | 0.777               |                             |          |
| 2000                                    |            | ***      |                 | Х                   |                             |          |
| Length (and age) at 50                  | % maturity | :        | Males<br>29.5cm | (3-4yr)<br>Rothrock | Females<br>29.5cm<br>(1973) | (3-4yr)  |
| 70 Wature: Assuming 3                   |            | 1007     | 1001.02         | 2000                |                             |          |
| н. aecagrammus                          | 19/4-/0    | 198/     | 1991-92         | 2000                |                             |          |
| Iviales                                 | 54         | 100      | 45              | 45                  |                             |          |
| Females                                 | 54         | 100      | 45              | 45                  |                             |          |





No data available for 1987

**Figure 12.** Fall length-frequency distributions of kelp greenling (*H. decagrammus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 12.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for kelp greenling (*H. decagrammus*) on the Point George permanent leadline transect in fall (October-December).

| ANOVA: Single Fac                           | ctor                     |                 |                 |                     |                             |          |
|---------------------------------------------|--------------------------|-----------------|-----------------|---------------------|-----------------------------|----------|
| FALL H. decagram                            | mus                      |                 |                 |                     |                             |          |
| SUMMARY                                     |                          |                 |                 |                     |                             |          |
| Groups                                      | Count                    | Sum             | Average         | Variance            | Min                         | Max      |
| 1974-76                                     | 22                       | 806.365         | 36.65296        | 43.88749            | 15                          | 48       |
| 1991-92                                     | 76                       | 2587.9          | 34.05132        | 44.0268             | 20                          | 53       |
| 1999-2000                                   | 47                       | 1743            | 37.08511        | 43.25347            | 25                          | 50       |
| ANOVA                                       |                          |                 |                 |                     |                             |          |
| Source of Variation                         | SS                       | df              | MS              | F                   | P-value                     | F crit   |
| Between Groups                              | 306.1129                 | 2               | 153.0565        | 3.497979            | 0.032892                    | 3.059831 |
| Within Groups                               | 6213.307                 | 142             | 43.75568        |                     | *                           |          |
| Total                                       | 6519.42                  | 144             |                 |                     |                             |          |
| F-Test Two-Sample<br>Total length (cm)      | for Varian               | ce              |                 |                     |                             |          |
| H. decagrammus                              | 1974-76                  | 1991-92         | 1999-2000       |                     |                             |          |
| 1974-76                                     | Х                        | 0.781           | 0.932           |                     |                             |          |
| 1991-92                                     |                          | Х               | 0.809           |                     |                             |          |
| 1999-2000                                   |                          |                 | Х               |                     |                             |          |
| t-Test: Two-Sample<br>Total length (cm)     |                          |                 |                 |                     |                             |          |
| H. decagrammus                              | 1974-76                  | 1991-92         | 1999-2000       |                     |                             |          |
| 1974-76                                     | X                        | 0.085           | 0.800           |                     |                             |          |
| 1991-92                                     |                          | Х               | 0.016           |                     |                             |          |
| 2000                                        |                          | *               | Х               |                     |                             |          |
| Length (and age) at :<br>% Mature: Assuming | 50% matur<br>g 50:50 sex | ity:<br>a ratio | males<br>29.5cm | (3-4yr)<br>Rothrock | females<br>29.5cm<br>(1973) | (3-4yr)  |
| H. decagrammus                              | 1974-76                  | 1991-92         | 1999-2000       |                     |                             |          |
| Males                                       | 92                       | 74              | 86              |                     |                             |          |
| females                                     | 92                       | 74              | 86              |                     |                             |          |

45

The overall ANOVAs for *S. emphaeus* were statistically significant for summer, and fall (ANOVA: p < 0.0001, p < 0.0001). For winter, data is available only for 1970's and 1999-2000, and these data showed a significant increase in total length over time (ttest: p < 0.001). For spring, only 1999-2000 data are available, and therefore no statistics can be calculated. For summer, only data from 1987 and 1999-2000 are available and these data showed a significant decrease (t-test: p < 0.001). For fall, only data from 1974-1976 and 1999-2000 are available and these data showed a significant increase (t-test: p < 0.001) (Figures 13-16, Tables 13-16). In all cases, data were insufficient to determine trends before or after reserve implementation. Trends could usually be determined from before (1974-1976 or 1987) to after (1999-2000), with mixed results but generally increasing. Combined with the first analysis, the density of *S. emphaeus* was significantly increasing and the increase even accelerated with reserve status, however effects of reserve status on lengths vary.

The second three analyses focus on the three species that were unobserved at the Point George permanent transect in the more recent time periods. *S. melanops* were only sighted during 1974-76 and 1987. In 1987, there was only one sighting. Therefore, a variance could not be computed to determine statistical significance (Figures 17-20, Tables 17-20). There was insufficient data to determine trends in total length of *S. melanops*. Combined with the first analysis, *S. melanops* disappeared over time and therefore effects of reserve status on length cannot be determined.







**Figure 13.** Winter length-frequency distributions of Puget Sound rockfish (*S. emphaeus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 13.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for Puget Sound rockfish (*S. emphaeus*) on the Point George permanent leadline transect in winter (January-March).

# ANOVA: Single Factor **WINTER** *S. emphaeus*

| SUMMARY                |         |      |         |          |         |         |
|------------------------|---------|------|---------|----------|---------|---------|
| Groups                 | Count   | Sum  | Average | Variance | Min     | Max     |
| 1974-76                | 20      | 55   | 2.75    | 0.06579  | 3       | 3       |
| 1999-2000              | 349     | 1248 | 3.57593 | 5.57252  | 1       | 16      |
| ANOVA                  |         |      |         |          |         |         |
| Source of<br>Variation | SS      | df   | MS      | F        | P-value | F crit  |
| Between Groups         | 12.9038 | 1    | 12.9038 | 2.44046  | 0.1191  | 3.86692 |
| Within Groups          | 1940.49 | 367  | 5.28743 |          |         |         |
| Total                  | 1953.39 | 368  |         |          |         |         |

#### F-Test Two-Sample for Variance

Total length (cm)

| Total length (em) |         |         |           |
|-------------------|---------|---------|-----------|
| S. caurinus       | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | Х       | Х       | 0.000     |
| 1991-92           | Х       | Х       | Х         |
| 1999-2000         | ***     | Х       | Х         |

### t-Test: Two-Sample

Total length (cm)

Females

| S. caurinus | 1974-76 | 1991-92 | 1999-2000 |
|-------------|---------|---------|-----------|
| 1974-76     | Х       | Х       | 0.000     |
| 1991-92     | Х       | Х       | Х         |
| 1999-2000   | ***     | Х       | Х         |

0

| Length (and age) a | t 50% mat   | urity:   | males<br>12.5cm | (1.9yr)<br>Beckman | females<br>12.5cm<br>(1995) | (1.9yr) |
|--------------------|-------------|----------|-----------------|--------------------|-----------------------------|---------|
| % Mature: Assumi   | ing 50:50 s | ex ratio |                 |                    |                             |         |
| S. caurinus        | 1974-76     | 1991-92  | 1999-2000       |                    |                             |         |
| Males              | 0           |          | 4               |                    |                             |         |



No data available for 1987



**Figure 14.** Spring length-frequency distributions of Puget Sound rockfish (*S. emphaeus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 14.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for Puget Sound rockfish (*S. emphaeus*) on the Point George permanent leadline transect in spring (April-June).

# ANOVA: Single Factor **SPRING** *S. emphaeus*

| SUMMARY           |              |           |          |                    |          |                |
|-------------------|--------------|-----------|----------|--------------------|----------|----------------|
| Group             | Count        | Sum       | Average  | Variance           | Min      | Max            |
| 1999-2000         | 1243         | 11074     | 1066.58  | 30.6206            | 4        | 2 16           |
|                   |              |           |          |                    |          |                |
| ANOVA             |              |           |          |                    |          |                |
| Source of         | SS           | df        | MS       | F                  | P-value  | F crit         |
| Variation         |              | ·         |          |                    |          |                |
| Between Groups    | NA           | NA        | NA       | NA                 | NA       | NA             |
| Within Groups     | NA           | NA        | NA       |                    |          |                |
| Total             | NA           | NA        |          |                    |          |                |
|                   | 1 6 17       |           |          |                    |          |                |
| F-Test Two-Samp   | ble for Vari | ance      |          |                    |          |                |
| Total length (cm) | 107476       | 1001.00   | 1000 200 | 0                  |          |                |
| H. decagrammus    | 1974-76      | 1991-92   | 1999-200 | 0                  |          |                |
| 1974-76           | X            | Х         | X        |                    |          |                |
| 1991-92           | X            | Х         | Х        |                    |          |                |
| 1999-2000         | X            | Х         | Х        | -                  |          |                |
| t Test. Two Same  | مام          |           |          |                    |          |                |
| Total length (cm) |              |           |          |                    |          |                |
| H. decagrammus    | 1974-76      | 1991-92   | 1999-200 | 0                  |          |                |
| 1974-76           | X            | Х         | Х        |                    | -        |                |
| 1991-92           | X            | Х         | Х        |                    |          |                |
| 1999-2000         | X            | Х         | Х        |                    |          |                |
|                   |              |           | Malag    |                    | formalag |                |
| T (1 ( 1)         | . 500/       |           | Males    | (1 0 )             | iemaies  | $(1,0,\ldots)$ |
| Length (and age)  | at 50% ma    | turity:   | 12.5cm   | (1.9yr)<br>Beckman | (1995)   | (1.9yr)        |
| % Mature: Assum   | ing 50:50 s  | sex ratio |          |                    |          |                |
| H. decagrammus    | 1974-76      | 1991-92   | 1999-200 | 0                  |          |                |
| Males             |              |           | 60       |                    | •        |                |
| Females           |              |           | 60       |                    |          |                |



**Figure 15.** Summer length-frequency distributions of Puget Sound rockfish (*S. emphaeus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 15.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for Puget Sound rockfish (*S. emphaeus*) on the Point George permanent leadline transect in summer (July-September).

# ANOVA: Single Factor **SUMMER** *S. emphaeus*

#### SUMMARY

| Groups    | Count | Sum | Average | Variance | Min | Max |
|-----------|-------|-----|---------|----------|-----|-----|
| 1987      | 56    | 920 | 16.4286 | 36.2857  | 6   | 27  |
| 1999-2000 | 70    | 340 | 4.85714 | 8.32712  | 2   | 14  |

ANOVA

| Source of Variation | SS      | df  | MS      | F       | P-value | F crit  |
|---------------------|---------|-----|---------|---------|---------|---------|
| Between Groups      | 4165.71 | 1   | 4165.71 | 200.969 | 1E-27   | 3.91755 |
| Within Groups       | 2570.29 | 124 | 20.7281 |         | ***     |         |
| Total               | 6736    | 125 |         |         |         |         |

### F-Test Two-Sample for Variance

Total length (cm)

| rotar tengtin (eni) |         |      |         |       |
|---------------------|---------|------|---------|-------|
| H. decagrammus      | 1974-76 | 1987 | 1991-92 | 2000  |
| 1974-76             | Х       | Х    | Х       | Х     |
| 1987                | Х       | Х    | Х       | 0.000 |
| <i>1991-92</i>      | Х       | Х    | Х       | Х     |
| 2000                | Х       | ***  | Х       | Х     |

# t-Test: Two-Sample

#### Total length (cm)

| H. decagrammus | 1974-76 | 1987 | 1991-92 | 2000  |
|----------------|---------|------|---------|-------|
| 1974-76        | X       | Х    | Х       | Х     |
| 1987           | Х       | Х    | Х       | 0.000 |
| 1991-92        | Х       | Х    | Х       | Х     |
| 2000           | X       | ***  | Х       | Х     |

| Length (and age) at 50% maturity: |             |       | Males<br>12.5cm | (1.9yr)<br>Beckman | females<br>12.5cm<br>(1995) | (1.9yr) |
|-----------------------------------|-------------|-------|-----------------|--------------------|-----------------------------|---------|
| % Mature: Assumin                 | g 50:50 sex | ratio |                 |                    | · /                         |         |
| H. decagrammus                    | 1974-76     | 1987  | 1991-92         | 2000               | -                           |         |
| Males                             |             | 90    | )               | 3                  | 3                           |         |
| Females                           |             | 9(    | )               | 2                  | 3                           |         |







**Figure 16.** Fall length-frequency distributions of Puget Sound rockfish (*S. emphaeus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 16.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for Puget Sound rockfish (*S. emphaeus*) on the Point George permanent leadline transect in fall (October-December).

ANOVA: Single Factor **FALL** *S. emphaeus* 

#### SUMMARY

| Groups              | Count   | Sum  | Average | Variance | Min     | Max     |
|---------------------|---------|------|---------|----------|---------|---------|
| 1974-76             | 2       | 8    | 4       | 0        | 4       | 4       |
| 1999-2000           | 138     | 1661 | 12.0362 | 2.66291  | 6       | 16      |
| ANOVA               |         |      |         |          |         |         |
| Source of Variation | SS      | df   | MS      | F        | P-value | F crit  |
| Between Groups      | 127.317 | 1    | 127.317 | 48.1601  | 1.4E-10 | 3.90973 |
| Within Groups       | 364.819 | 138  | 2.64361 |          | ***     |         |
| Total               | 492.136 | 139  |         |          |         |         |

#### F-Test Two-Sample for Variance

Total length (cm)

| U V            |         |         |           |   |
|----------------|---------|---------|-----------|---|
| H. decagrammus | 1974-76 | 1991-92 | 1999-2000 | ) |
| 1974-76        | Х       | Х       | NA        |   |
| 1991-92        | Х       | Х       | Х         |   |
| 1999-2000      |         | Х       | Х         |   |

# t-Test: Two-Sample

| Tota | length | (cm) |
|------|--------|------|
|      |        |      |

| H. decagrammus | 1974-76 | 1991-92 | 1999-2000 |
|----------------|---------|---------|-----------|
| 1974-76        | Х       | Х       | 0.000     |
| 1991-92        | Х       | Х       | Х         |
| 2000           | ***     | Х       | Х         |

|                                    | males  |         | females  |         |
|------------------------------------|--------|---------|----------|---------|
| Length (and age) at 50% maturity:  | 12.5cm | (1.9yr) | 12.5cm   | (1.9yr) |
|                                    |        | Beckman | n (1995) |         |
| % Mature: Assuming 50:50 sex ratio |        |         |          |         |

| / · · · · · · · · · · · · · · · · · · · |         |         |           |  |
|-----------------------------------------|---------|---------|-----------|--|
| H. decagrammus                          | 1974-76 | 1991-92 | 1999-2000 |  |
| Males                                   | 0       | #N/A    | 14        |  |
| Females                                 | 0       | #N/A    | 14        |  |







**Figure 17.** Winter length-frequency distributions of black rockfish (*S. melanops*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 17.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for black rockfish (*S. melanops*) on the Point George permanent leadline transect in winter (January-March).

**ANOVA: Single Factor** WINTER S. melanops SUMMARY Count Sum Min Groups Average Variance Max 1974-76 1 40 40 NA 40 40 1991-92 0 0 0 NA NA NA 1999-2000 0 NA NA 0 0 NA ANOVA Source of Variation SS df MS F P-value F crit NA NA Between Groups NA NA NA NA Within Groups NA NA NA NA NA Total F-Test Two-Sample for Variance Total length (cm) S. melanops 1974-76 1991-92 1999-2000 1974-76 Х Х 1991-92 1999-2000 Х t-Test: Two-Sample Total length (cm) 1974-76 1991-92 1999-2000 S. melanops 1974-76 Х #DIV/0! #DIV/0! 1991-92 Х #DIV/0! 1999-2000 Х females males Length (and age) at 50% maturity: 38.3cm 38.3cm  $(6.3 \mathrm{yr})$ (6.3yr) Wallace and Taggart (1994) % Mature: Assuming 50:50 sex ratio 1991-92 1999-2000 S. melanops 1974-76 Males 100 Females 100






**Figure 18.** Spring length-frequency distributions of black rockfish (*S. melanops*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 18.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for black rockfish (*S. melanops*) on the Point George permanent leadline transect in spring (April-June).

| SPRING S. melanop<br>SUMMARY                                                                                                                                                                     | tor<br>s                                   |                                          |                                                     |          |         |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------------------|----------|---------|--------|
| Groups                                                                                                                                                                                           | Count                                      | Sum                                      | Average                                             | Variance | Min     | Max    |
| 1974-76                                                                                                                                                                                          | 68                                         | 2747                                     | 40                                                  | 12.03735 | 27      | 42     |
| 1991-92                                                                                                                                                                                          | 0                                          | NA                                       | NA                                                  | NA       | 0       | 0      |
| 1999-2000                                                                                                                                                                                        | 0                                          | NA                                       | NA                                                  | NA       | 0       | 0      |
| ANOVA                                                                                                                                                                                            |                                            |                                          |                                                     |          |         |        |
| Source of Variation                                                                                                                                                                              | SS                                         | df                                       | MS                                                  | F        | P-value | F crit |
| Between Groups                                                                                                                                                                                   | NA                                         | NA                                       | NA                                                  | NA       | NA      | NA     |
| Within Groups                                                                                                                                                                                    | NA                                         | NA                                       | NA                                                  |          |         |        |
| Total                                                                                                                                                                                            | NA                                         | NA                                       |                                                     |          |         |        |
| F-Test Two-Sample                                                                                                                                                                                | for Varianc                                | · 0                                      |                                                     |          |         |        |
| Total length (cm)                                                                                                                                                                                | ior vurtuite                               |                                          |                                                     |          |         |        |
| Total length (cm)       S. melanops                                                                                                                                                              | <i>1974-76</i>                             | 1991-92                                  | 1999-2000                                           |          |         |        |
| Total length (cm)S. melanops1974-76                                                                                                                                                              | <u>1974-76</u><br>X                        | <u>1991-92</u><br>NA                     | 1999-2000<br>NA                                     |          |         |        |
| S. melanops           1974-76           1991-92                                                                                                                                                  | <u>1974-76</u><br>X                        | <u>1991-92</u><br>NA<br>X                | 1999-2000<br>NA<br>NA                               |          |         |        |
| S. melanops           1974-76           1991-92           1999-2000                                                                                                                              | <u>1974-76</u><br>X                        | <u>1991-92</u><br>NA<br>X                | 1999-2000<br>NA<br>NA<br>X                          |          |         |        |
| Total length (cm)           S. melanops           1974-76           1991-92           1999-2000   t-Test: Two-Sample                                                                             | <u>1974-76</u><br>X                        | <u>1991-92</u><br>NA<br>X                | 1999-2000<br>NA<br>NA<br>X                          |          |         |        |
| Total length (cm)<br><u>S. melanops</u><br>1974-76<br>1991-92<br>1999-2000<br>t-Test: Two-Sample<br>Total length (cm)                                                                            | <u>1974-76</u><br>X                        | 1991-92<br>NA<br>X                       | 1999-2000<br>NA<br>NA<br>X                          |          |         |        |
| Total length (cm)<br><u>S. melanops</u><br>1974-76<br>1991-92<br>1999-2000<br>t-Test: Two-Sample<br>Total length (cm)<br><u>S. melanops</u>                                                      | <u>1974-76</u><br>X<br>1974-76             | <u>1991-92</u><br>NA<br>X<br>1991-92     | 1999-2000<br>NA<br>NA<br>X                          |          |         |        |
| Total length (cm)S. melanops1974-761991-921999-2000t-Test: Two-SampleTotal length (cm)S. melanops1974-76                                                                                         | <u>1974-76</u><br>X<br><u>1974-76</u><br>X | 1991-92<br>NA<br>X<br>1991-92<br>NA      | 1999-2000<br>NA<br>NA<br>X<br>1999-2000<br>NA       |          |         |        |
| Total length (cm)           S. melanops           1974-76           1991-92           1999-2000   t-Test: Two-Sample Total length (cm)           S. melanops           1974-76           1991-92 | <u>1974-76</u><br>X<br><u>1974-76</u><br>X | 1991-92<br>NA<br>X<br>1991-92<br>NA<br>X | 1999-2000<br>NA<br>NA<br>X<br>1999-2000<br>NA<br>NA |          |         |        |

|                                   |             |         | males     |         | females   |           |
|-----------------------------------|-------------|---------|-----------|---------|-----------|-----------|
| Length (and age) at 50% maturity: |             | ity:    | 38.3cm    | (6.3yr) | 38.3cm    | (6.3yr)   |
|                                   |             | -       |           | Wallace | and Tagga | rt (1994) |
| % Mature: Assuming                | g 50:50 sex | ratio   |           |         |           |           |
| S. melanops                       | 1974-76     | 1991-92 | 1999-2000 | -       |           |           |
| Males                             | 89          |         |           | -       |           |           |
| Females                           | 89          |         |           |         |           |           |
|                                   |             |         |           |         |           |           |



**Figure 19.** Summer length-frequency distributions of black rockfish (*S. melanops*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 19.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for black rockfish (*S. melanops*) on the Point George permanent leadline transect in summer (July-September).

| ANOVA: Single Fac     | ctor         |       |         |           |             |         |
|-----------------------|--------------|-------|---------|-----------|-------------|---------|
| SUMMER S. melan       | ops          |       |         |           |             |         |
| SUMMARY               | •            |       |         |           |             |         |
| Groups                | Count        | Sum   | Average | Variance  | Min         | Max     |
| 1974-76               | 84           | 2751  | 33      | 23.65054  | 15          | 45      |
| 1987                  | 1            | 20    | 20      | NA        | 20          | 20      |
| 1991-92               | 0            | NA    | NA      | NA        | 0           | 0       |
| 1999-2000             | 0            | NA    | NA      | NA        | 0           | 0       |
| ANOVA                 |              |       |         |           |             |         |
| Source of Variation   | SS           | df    | MS      | F         | P-value     | F crit  |
| Between Groups        | NA           | NA    | NA      | NA        | NA          | NA      |
| Within Groups         | NA           | NA    | NA      |           |             |         |
| Total                 | NA           | NA    |         |           |             |         |
| F-Test Two-Sample     | for Varianc  | e     |         |           |             |         |
| Total length (cm)     |              |       |         |           |             |         |
| S. melanops           | 1974-76      | 1987  | 1991-92 | 2000      | -           |         |
| 1974-76               | X            |       |         |           | -           |         |
| 1987                  |              | Х     |         |           |             |         |
| 1991-92               |              |       | Х       |           |             |         |
| 2000                  |              |       |         | Х         | -           |         |
| t Test: Two Sample    |              |       |         |           |             |         |
| Total length (cm)     |              |       |         |           |             |         |
| S malanons            | 1074 76      | 1087  | 1001 02 | 2000      | -           |         |
| <u> </u>              | 19/4-/0<br>V | 1907  | 1991-92 | 2000      | -           |         |
| 19/4-/0               | Λ            | v     |         |           |             |         |
| 1907                  |              | Λ     | v       |           |             |         |
| 2000                  |              |       | Λ       | Х         |             |         |
|                       |              |       |         |           |             |         |
|                       |              |       | males   |           | females     |         |
| Length (and age) at 5 | 50% maturi   | ty:   | 38.3cm  | (6.3yr)   | 38.3cm      | (6.3yr) |
|                       |              |       |         | Wallace a | and Taggart | (1994)  |
| % Mature: Assuming    | g 50:50 sex  | ratio |         |           | _           |         |
| S. melanops           | 1974-76      | 1987  | 1991-92 | 2000      | _           |         |
| Males                 | 15           |       |         |           |             |         |
| Females               | 3            |       |         |           |             |         |







**Figure 20.** Fall length-frequency distributions of black rockfish (*S. melanops*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 20.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for black rockfish (*S. melanops*) on the Point George permanent leadline transect in fall (October-December).

| ANOVA: Single Fac                       | ctor        |         |                 |                      |                                |                     |
|-----------------------------------------|-------------|---------|-----------------|----------------------|--------------------------------|---------------------|
| FALL S. melanops                        |             |         |                 |                      |                                |                     |
| SUMMARY                                 |             |         |                 |                      |                                |                     |
| Groups                                  | Count       | Sum     | Average         | Variance             | Min                            | Max                 |
| 1974-76                                 | 2           | 38      | 19              | 0                    | 19                             | 19                  |
| 1991-92                                 | 0           | NA      | NA              | NA                   | 0                              | 0                   |
| 1999-2000                               | 0           | NA      | NA              | NA                   | 0                              | 0                   |
| ANOVA                                   |             |         |                 |                      |                                |                     |
| Source of Variation                     | SS          | df      | MS              | F                    | P-value                        | F crit              |
| Between Groups                          | NA          | ŇA      | NA              | NA                   | NA                             | NA                  |
| Within Groups                           | NA          | NA      | NA              |                      |                                |                     |
| Total                                   | NA          | NA      |                 |                      |                                |                     |
| F-Test Two-Sample<br>Total length (cm)  | for Varian  | ce      |                 | _                    |                                |                     |
| S. melanops                             | 1974-76     | 1991-92 | 1999-2000       |                      |                                |                     |
| 1974-76                                 | Х           |         |                 | -                    |                                |                     |
| 1991-92                                 |             | Х       |                 |                      |                                |                     |
| 1999-2000                               |             |         | Х               | -                    |                                |                     |
| t-Test: Two-Sample<br>Total length (cm) |             |         |                 |                      |                                |                     |
| S. melanops                             | 1974-76     | 1991-92 | 1999-2000       | -                    |                                |                     |
| 1974-76                                 | Х           |         |                 | -                    |                                |                     |
| 1991-92                                 |             | Х       |                 |                      |                                |                     |
| 2000                                    |             |         | Х               | -                    |                                |                     |
| Length (and age) at 5                   | 50% matur   | ity:    | males<br>38.3cm | (6.3yr)<br>Wallace a | females<br>38.3cm<br>nd Taggar | (6.3yr)<br>t (1994) |
| % Mature: Assuming                      | g 50:50 sez | k ratio |                 |                      | 00                             | × /                 |
| S. melanops                             | 1974-76     | 1991-92 | 1999-2000       | -                    |                                |                     |
| Males                                   | 0           |         |                 | -                    |                                |                     |
| Females                                 | 0           |         |                 |                      |                                |                     |

*S. flavidus* were also only sighted in winter, spring and summer during 1974-76 and summer during 1987. Therefore, statistics can only be calculated for before reserve trends for summer. Total mean lengths between these two summer time periods decreased, but not significantly (t-test: p = 0.409) (Figures 21-24, Tables 21-24). There were no sightings in 1991-1992 or 1999-2000. In general, there was insufficient data to determine trends in total length of *S. flavidus*. Combined with the first analysis, *S. flavidus* disappeared over time and therefore effects of reserve status on length cannot be determined.

*S. maliger* was sighted in 1974-76, 1987, and 1991-1992, but not sighted during 1999-2000. No statistics could be calculated for winter due to insufficient data. For spring, the trend in total length from 1974-1976 to 1991-1992 was a decrease, but not significant (t-test: p = 0.249). For summer, total length did not change before reserve implementation, and data from after reserves is insufficient to determine trends. Data from fall are also insufficient (Figures 25-28, Tables 25-28). In general, data were insufficient to determine trends and when there were sufficient data, no significant trend was evident. Given that there were no sightings in 2000, it is not possible to compute the since-reserve effects. Combined with the first analysis, population density of *S. maliger* was decreasing before reserve implementation, and after reserves, *S. maliger* disappeared and no trends in length were evident.







**Figure 21.** Winter length-frequency distributions of yellowtail rockfish (*S. flavidus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 21.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for yellowtail rockfish (*S. flavidus*) on the Point George permanent leadline transect in winter (January-March).

| ANOVA: Single Fac                       | tor         |          |                  |                              |                                           |         |
|-----------------------------------------|-------------|----------|------------------|------------------------------|-------------------------------------------|---------|
| WINTER S.                               |             |          |                  |                              |                                           |         |
| <i>flaviaus</i>                         |             |          |                  |                              |                                           |         |
|                                         | Count       | <b>C</b> | 1                | IZ                           | Min                                       | Maria   |
| Groups                                  | Count       | Sum      | Average          | $\frac{Variance}{2}$         | $\underline{Min}$                         | Max     |
| 19/4-/6                                 | 13          | 580      | 45               | 2.630164                     | 39                                        | 45      |
| 1991-92                                 | 0           | NA       | NA NA            | NA                           | 0                                         | 0       |
| 1999-2000                               | 0           | NA       | NA               | NA                           | 0                                         | 0       |
| ANOVA                                   |             |          |                  |                              |                                           |         |
| Source of Variation                     | SS          | df       | MS               | F                            | P-value                                   | F crit  |
| Between Groups                          | NA          | NA       | NA               | NA                           | NA                                        | NA      |
| Within Groups                           | NA          | NA       | NA               |                              |                                           |         |
| Total                                   | NA          | NA       |                  |                              |                                           |         |
| F-Test Two-Sample<br>Total length (cm)  | for Varian  | ce       |                  |                              |                                           |         |
| S. flavidus                             | 1974-76     | 1991-92  | 1999-2000        |                              |                                           |         |
| 1974-76                                 | Х           |          |                  |                              |                                           |         |
| <i>1991-92</i>                          |             | Х        |                  |                              |                                           |         |
| 1999-2000                               |             |          | Х                | -                            |                                           |         |
| t-Test: Two-Sample<br>Total length (cm) |             |          |                  |                              |                                           |         |
| S. flavidus                             | 1974-76     | 1991-92  | 1999-2000        |                              |                                           |         |
| 1974-76                                 | Х           |          |                  |                              |                                           |         |
| 1991-92                                 |             | Х        |                  |                              |                                           |         |
| 1999-2000                               |             |          | Х                | -                            |                                           |         |
| Length (and age) at 5                   | 50% matur   | ity:     | males<br>34-41cm | (5-9yr)<br>Taggart <i>ei</i> | females<br>34-41cm<br><i>t al.</i> (2000) | (5-9yr) |
| % Mature: Assuming                      | g 50:50 sex | k ratio  |                  | 00                           | ()                                        |         |
| S. flavidus                             | 1974-76     | 1991-92  | 1999-2000        |                              |                                           |         |
| males                                   | 98          |          |                  |                              |                                           |         |
| females                                 | 92          |          |                  |                              |                                           |         |



No data available for 1987



**Figure 22.** Spring length-frequency distributions of yellowtail rockfish (*S. flavidus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 22.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for yellowtail rockfish (*S. flavidus*) on the Point George permanent leadline transect in spring (April-June).

| ANOVA: Single Fact                       | tor        |         |                  |                              |                    |         |
|------------------------------------------|------------|---------|------------------|------------------------------|--------------------|---------|
| <b>SPRING</b> <i>S. flavidus</i>         |            |         |                  |                              |                    |         |
| SUMMARY                                  |            |         |                  |                              |                    |         |
| Groups                                   | Count      | Sum     | Average          | Variance                     | Min                | Max     |
| 1974-76                                  | 117        | 4816    | 41               | 5.320351                     | 36                 | 42      |
| 1991-92                                  | 0          | NA      | NA               | NA                           | 0                  | 0       |
| 1999-2000                                | 0          | NA      | NA               | NA                           | 0                  | 0       |
| ANOVA                                    |            |         |                  |                              |                    |         |
| Source of Variation                      | SS         | df      | MS               | F                            | P-value            | F crit  |
| Between Groups                           | NA         | ŇA      | NA               | NA                           | NA                 | NA      |
| Within Groups                            | NA         | NA      | NA               |                              |                    |         |
| Total                                    | NA         | NA      | -                |                              |                    |         |
| F-Test Two-Sample f<br>Total length (cm) | for Varian | ce      |                  |                              |                    |         |
| S. flavidus                              | 1974-76    | 1991-92 | 1999-2000        |                              |                    |         |
| 1974-76                                  | X          |         |                  | •                            |                    |         |
| 1991-92                                  |            | Х       |                  |                              |                    |         |
| 1999-2000                                |            |         | Х                |                              |                    |         |
| t-Test: Two-Sample<br>Total length (cm)  |            |         |                  |                              |                    |         |
| S. flavidus                              | 1974-76    | 1991-92 | 1999-2000        |                              |                    |         |
| 1974-76                                  | X          |         |                  | -                            |                    |         |
| 1991-92                                  |            | Х       |                  |                              |                    |         |
| 1999-2000                                |            |         | Х                |                              |                    |         |
| Length (and age) at 5                    | 0% matur   | ity:    | males<br>34-41cm | (5-9yr)<br>Taggart <i>et</i> | females $34-41$ cm | (5-9yr) |
| % Mature: Assuming                       | 50:50 sex  | x ratio |                  | raggari ei                   | ui. (2000)         |         |
| S. flavidus                              | 1974-76    | 1991-92 | 1999-2000        | •                            |                    |         |
| males                                    | 77         |         |                  | -                            |                    |         |
| females                                  | 77         |         |                  |                              |                    |         |



**Figure 23.** Summer length-frequency distributions of yellowtail rockfish (*S. flavidus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 23.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for yellowtail rockfish (*S. flavidus*) on the Point George permanent leadline transect in summer (July-September).

| ANOVA: Single Fac     | ctor         |       |         |           |              |         |
|-----------------------|--------------|-------|---------|-----------|--------------|---------|
| SUMMER S. flavida     | US           |       |         |           |              |         |
| SUMMARY               |              |       |         |           |              |         |
| Groups                | Count        | Sum   | Average | Variance  | Min          | Max     |
| 1974-76               | 202          | 7407  | 37      | 19.13823  | 18           | 50      |
| 1987                  | 23           | 802   | 35      | 103.0277  | 18           | 46      |
| 1991-92               | 0            | NA    | NA      | NA        | 0            | 0       |
| 1999-2000             | 0            | NA    | NA      | NA        | 0            | 0       |
| ANOVA                 |              |       |         |           |              |         |
| Source of Variation   | SS           | df    | MS      | F         | P-value      | F crit  |
| Between Groups        | NA           | NA    | NA      | NA        | NA           | NA      |
| Within Groups         | NA           | NA    | NA      |           |              |         |
| Total                 | NA           | NA    |         |           |              |         |
| F-Test Two-Sample     | for Varianc  | e     |         |           |              |         |
| Total length (cm)     | ioi vuituite | •     |         |           |              |         |
| S. flavidus           | 1974-76      | 1987  | 1991-92 | 2000      | -            |         |
| 1974-76               | X            | 0.000 |         |           | -            |         |
| 1987                  |              | Х     |         |           |              |         |
| 1991-92               |              |       | Х       |           |              |         |
| 2000                  |              |       |         | Х         | _            |         |
| t-Test. Two-Sample    |              |       |         |           |              |         |
| Total length (cm)     |              |       |         |           |              |         |
| <i>S flavidus</i>     | 1974-76      | 1987  | 1991-92 | 2000      | -            |         |
| 1974-76               | X            | 0.409 | 1771 72 | 2000      | -            |         |
| 1987                  |              | X     |         |           |              |         |
| 1991-92               |              |       | Х       |           |              |         |
| 2000                  |              |       |         | Х         | _            |         |
|                       |              |       |         |           | -            |         |
|                       |              |       | males   |           | females      |         |
| Length (and age) at : | 50% maturi   | ty:   | 34-41cm | (5-9yr)   | 34-41cm      | (5-9yr) |
|                       |              |       |         | Taggart e | t al. (2000) |         |
| % Mature: Assuming    | g 50:50 sex  | ratio |         |           | -            |         |
| S. flavidus           | 1974-76      | 1987  | 1991-92 | 2000      | -            |         |
| males                 | 8            | 42    |         |           |              |         |
| females               | 8            | 41    |         |           |              |         |







**Figure 24.** Fall length-frequency distributions of yellowtail rockfish (*S. flavidus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 24.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for yellowtail rockfish (*S. flavidus*) on the Point George permanent leadline transect in fall (October-December).

| ANOVA: Single Fact                          | tor                   |                 |                  |                              |                                         |         |
|---------------------------------------------|-----------------------|-----------------|------------------|------------------------------|-----------------------------------------|---------|
| FALL S. flavidus                            |                       |                 |                  |                              |                                         |         |
| SUMMARY                                     |                       |                 |                  |                              |                                         |         |
| Groups                                      | Count                 | Sum             | Average          | Variance                     | Min                                     | Max     |
| 1974-76                                     | 12                    | ND              | ND               | ND                           | ND                                      | ND      |
| 1991-92                                     | 0                     | NA              | NA               | NA                           | 0                                       | 0       |
| 1999-2000                                   | 0                     | NA              | NA               | NA                           | 0                                       | 0       |
| ANOVA                                       |                       |                 |                  |                              |                                         |         |
| Source of Variation                         | SS                    | df              | MS               | F                            | P-value                                 | F crit  |
| Between Groups                              | NA                    | NA              | NA               | NA                           | NA                                      | NA      |
| Within Groups                               | NA                    | NA              | NA               |                              |                                         |         |
| Total                                       | NA                    | NA              |                  |                              |                                         |         |
| F-Test Two-Sample f<br>Total length (cm)    | for Varian            | ce              |                  |                              |                                         |         |
| S. flavidus                                 | 1974-76               | 1991-92         | 1999-2000        |                              |                                         |         |
| 1974-76                                     | X                     |                 |                  | •                            |                                         |         |
| 1991-92                                     |                       | Х               |                  |                              |                                         |         |
| 1999-2000                                   |                       |                 | Х                |                              |                                         |         |
| t-Test: Two-Sample<br>Total length (cm)     |                       |                 |                  |                              |                                         |         |
| S. flavidus                                 | 1974-76               | 1991-92         | 1999-2000        |                              |                                         |         |
| 1974-76                                     | X                     |                 |                  |                              |                                         |         |
| 1991-92                                     |                       | Х               |                  |                              |                                         |         |
| 2000                                        |                       |                 | Х                |                              |                                         |         |
| Length (and age) at 5<br>% Mature: Assuming | 0% matur<br>50:50 sex | ity:<br>c ratio | Males<br>34-41cm | (5-9yr)<br>Taggart <i>et</i> | females<br>34-41cm<br><i>al.</i> (2000) | (5-9yr) |
| S. flavidus                                 | 1974-76               | 1991-92         | 1999-2000        |                              |                                         |         |
| males<br>females                            |                       |                 |                  |                              |                                         |         |







**Figure 25.** Winter length-frequency distributions of quillback rockfish (*S. maliger*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 25.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for quillback rockfish (*S. maliger*) on the Point George permanent leadline transect in winter (January-March).

| ANOVA: Single Factor                    | or          |         |                 |                    |                   |                  |
|-----------------------------------------|-------------|---------|-----------------|--------------------|-------------------|------------------|
| WINTER S. maliger                       |             |         |                 |                    |                   |                  |
| SUMMARY                                 |             |         |                 |                    |                   |                  |
| Groups                                  | Count       | Sum     | Average         | Variance           | Min               | Max              |
| 1974-76                                 | 4           | 97      | 24              | 69.90706           | 14                | 34               |
| 1991-92                                 | 0           | NA      | NA              | NA                 | . 0               | 0                |
| 1999-2000                               | 0           | NA      | NA              | NA                 | . 0               | 0                |
| ANOVA                                   |             |         |                 |                    |                   |                  |
| Source of Variation                     | SS          | df      | MS              | F                  | P-value           | F crit           |
| Between Groups                          | NA          | NA      | NA              | NA                 | NA                | NA               |
| Within Groups                           | NA          | NA      | NA              |                    |                   |                  |
| Total                                   | NA          | NA      |                 |                    |                   |                  |
| F-Test Two-Sample for Total length (cm) | or Variance | 2       |                 |                    |                   |                  |
| S. maliger                              | 1974-76     | 1991-92 | 1999-2000       | _                  |                   |                  |
| 1974-76                                 | Х           |         |                 | •                  |                   |                  |
| 1991-92                                 |             | Х       |                 |                    |                   |                  |
| 1999-2000                               |             |         | Х               |                    |                   |                  |
| t-Test: Two-Sample<br>Total length (cm) |             |         |                 |                    |                   |                  |
| S. maliger                              | 1974-76     | 1991-92 | 1999-2000       |                    |                   |                  |
| 1974-76                                 | X           |         |                 | •                  |                   |                  |
| 1991-92                                 |             | Х       |                 |                    |                   |                  |
| 1999-2000                               |             |         | Х               |                    |                   |                  |
| Length (and age) at 50                  | )% maturit  | y:      | males<br>29.5cm | (13yr)<br>Richards | females<br>28.1cm | (11yr)<br>(1986) |
| % Mature: Assuming                      | 50:50 sex 1 | ratio   |                 | ixicitat us        | anu Cass          | (1900)           |
| S. maliger                              | 1974-76     | 1991-92 | 1999-2000       | •                  |                   |                  |
| males                                   |             |         |                 |                    |                   |                  |
| temales                                 |             |         |                 |                    |                   |                  |







**Figure 26.** Spring length-frequency distributions of quillback rockfish (*S. maliger*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 26.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for quillback rockfish (*S. maliger*) on the Point George permanent leadline transect in spring (April-June).

| ANOVA: Single Fac<br>SPRING S. maliger<br>SUMMARY | tor         |         |           |          |                |         |
|---------------------------------------------------|-------------|---------|-----------|----------|----------------|---------|
| Groups                                            | Count       | Sum     | Average   | Variance | Min            | Max     |
| 1974-76                                           | 8           | 216.218 | 27.02725  | 56.312   | 10             | 34      |
| 1991-92                                           | 3           | 59      | 19.66667  | 152.3333 | 6              | 30      |
| 1999-2000                                         | 0           | NA      | NA        | NA       | 0              | 0       |
| ANOVA                                             |             |         |           |          |                |         |
| Source of Variation                               | SS          | df      | MS        | F        | <i>P-value</i> | F crit  |
| Between Groups                                    | 118.2071    | 1       | 118.2071  | 1.522304 | 0.24851        | 5.11735 |
|                                                   |             |         |           |          | 9              | 7       |
| Within Groups                                     | 698.8507    | 9       | 77.65008  |          |                |         |
| Total                                             | 817.0577    | 10      |           |          |                |         |
| F-Test Two-Sample 1<br>Total length (cm)          | for Varianc | e       |           |          |                |         |
| S. maliger                                        | 1974-76     | 1991-92 | 1999-2000 |          |                |         |
| 1974-76                                           | X           | 0.270   |           |          |                |         |
| 1991-92                                           |             | Х       |           |          |                |         |
| 1999-2000                                         |             |         | Х         |          |                |         |
| t-Test: Two-Sample<br>Total length (cm)           |             |         |           |          |                |         |
| S. maliger                                        | 1974-76     | 1991-92 | 1999-2000 |          |                |         |
| 1974-76                                           | X           | 0.249   |           |          |                |         |
| 1991-92                                           |             | Х       |           |          |                |         |
| 1999-2000                                         |             |         | Х         |          |                |         |
|                                                   |             |         |           |          | 0 1            |         |

|                       |           |         | males     |          | females  |        |
|-----------------------|-----------|---------|-----------|----------|----------|--------|
| Length (and age) at 5 | 0% maturi | ty:     | 29.5cm    | (13yr)   | 28.1cm   | (11yr) |
|                       |           |         |           | Richards | and Cass | (1986) |
| % Mature: Assuming    | 50:50 sex | ratio   |           | _        |          |        |
| S. maliger            | 1974-76   | 1991-92 | 1999-2000 |          |          |        |
| males                 | 80        | 33      |           | -        |          |        |

33

80

females



**Figure 27.** Summer length-frequency distributions of quillback rockfish (*S. maliger*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 27.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for quillback rockfish (*S. maliger*) on the Point George permanent leadline transect in summer (July-September).

#### ANOVA: Single Factor **SUMMER** S. maliger SUMMARY Count Variance Groups Sum Average Min Max 1974-76 23 575 25 27.45129 7 32 1987 15 369 25 46.25714 20 41 1991-92 1 12 12 NA 12 12 1999-2000 0 NA NA NA 0 0 ANOVA Source of Variation SSMS F df P-value F crit Between Groups 1.529941 1 1.529941 0.044009 0.835021 4.113161 Within Groups 1251.528 36 34.76468 37 Total 1253.058 F-Test Two-Sample for Variance Total length (cm) S. maliger 1974-76 1987 1991-92 1999-2000 0.265 1974-76 Х Х 1987 1991-92 Х 2000 Х t-Test: Two-Sample Total length (cm) 1987 2000 S. maliger 1974-76 1991-92 1974-76 Х 0.835 1987 Х 1991-92 Х 2000 Х males females Length (and age) at 50% maturity: 29.5cm (13yr) 28.1cm (11yr) Richards and Cass (1986) % Mature: Assuming 50:50 sex ratio 1974-76 1991-92 2000 S. maliger 1987 males 15 20 0 females 33 20 0



No data available for 1987



**Figure 28.** Fall length-frequency distributions of quillback rockfish (*S. maliger*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 28.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for quillback rockfish (*S. maliger*) on the Point George permanent leadline transect in fall (October-December).

| ANOVA: Single Fact                       | tor         |         |                 |                      |                                  |                 |
|------------------------------------------|-------------|---------|-----------------|----------------------|----------------------------------|-----------------|
| FALL S. maliger                          |             |         |                 |                      |                                  |                 |
| SUMMARY                                  |             |         |                 |                      |                                  |                 |
| Groups                                   | Count       | Sum     | Average         | Variance             | Min                              | Max             |
| 1974-76                                  | 3           | 63      | 21              | 27.5012              | 15                               | 24              |
| 1991-92                                  | 1           | 23      | 23              | NA                   | 23                               | 23              |
| 1999-2000                                | 0           | NA      | NA              | NA                   | 0                                | 0               |
| ANOVA                                    |             |         |                 |                      |                                  |                 |
| Source of Variation                      | SS          | df      | MS              | F                    | P-value                          | F crit          |
| Between Groups                           | NA          | NA      | NA              | NA                   | NA                               | NA              |
| Within Groups                            | NA          | NA      | NA              |                      |                                  |                 |
| Total                                    | NA          | NA      |                 |                      |                                  |                 |
| F-Test Two-Sample f<br>Total length (cm) | for Varianc | ce      |                 |                      |                                  |                 |
| S. maliger                               | 1974-76     | 1991-92 | 1999-2000       |                      |                                  |                 |
| 1974-76                                  | Х           |         |                 |                      |                                  |                 |
| 1991-92                                  |             | Х       |                 |                      |                                  |                 |
| 1999-2000                                |             |         | Х               |                      |                                  |                 |
| t-Test: Two-Sample<br>Total length (cm)  |             |         |                 |                      |                                  |                 |
| S. maliger                               | 1974-76     | 1991-92 | 1999-2000       |                      |                                  |                 |
| 1974-76                                  | X           |         |                 |                      |                                  |                 |
| 1991-92                                  |             | Х       |                 |                      |                                  |                 |
| 2000                                     |             |         | Х               | i                    |                                  |                 |
| Length (and age) at 5                    | 0% maturi   | ty:     | males<br>29.5cm | (13yr)<br>Richards a | females<br>28.1cm<br>and Cass (1 | (11yr)<br>1986) |
| % Mature: Assuming                       | 50:50 sex   | ratio   |                 |                      |                                  | /               |
| S. maliger                               | 1974-76     | 1991-92 | 1999-2000       |                      |                                  |                 |
| males                                    | 0           | 0       |                 |                      |                                  |                 |
| females                                  | 0           | 0       |                 |                      |                                  |                 |

For total length of *O. elongatus*, overall ANOVAs had mixed significance (ANOVA: ns, ns, p < 0.01, ns). Before-reserve total length increased for winter and summer (t-test: ns, p = 0.001) and decreased for spring and fall (t-test: ns, ns). The since-reserve mean total length has increased for winter and fall (t-test: ns, ns) and decreased for spring (t-test: ns) and summer (insufficient data to calculate statistics). (Figures 29-32, Tables 29-32). In general, *O. elongatus* has shown mixed, mostly non-significant differences before reserves and mixed, non-significant differences after reserve formation. Combined with the first analysis, reserve status reversed the decline in density for this species, in general had no effect on total length over time. Therefore, reserve status appears to have increased density over time, but not affected length over time.

### Comparison of habitat and fishing activity between 2000 spatial study sites

Two habitat variables, habitat complexity and reef slope, were compared between each pair of reserve/non-reserve sites. Two sample t-tests were used to compute p-values. H<sub>0</sub>: mean habitat variable at each reserve/non-reserve pair is equal, and H<sub>A</sub>: mean habitat variable at each reserve/non-reserve pair is unequal.

Substrate complexity was not significantly different for George/Neck, Shady/Turn or Yellow/Jones (t-test: p = 0.264, p = 0.385 and p = 0.915, respectively) (Figure 33). Reef slope was not significantly different for Shady/Turn and Yellow/Jones (t-test: p = 0.063 and p = 0.786), but was there was a significant difference for reef slope between George and Neck (t-test: p = 0.002) (Figure 34).







**Figure 29.** Winter length-frequency distributions of lingcod (*O. elongatus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 29.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for lingcod (*O. elongatus*) on the Point George permanent leadline transect in winter (January-March).

### ANOVA: Single Factor **WINTER** *O. elongatus* SUMMARY

| Groups    | Count | Sum    | Average  | Variance | Min | Max |
|-----------|-------|--------|----------|----------|-----|-----|
| 1974-76   | 3     | 139.48 | 46.49333 | 67.12333 | 38  | 54  |
| 1991-92   | 5     | 271    | 54.2     | 317.2    | 25  | 71  |
| 1999-2000 | 7     | 425    | 60.71429 | 328.5714 | 35  | 85  |

ANOVA

| Source of Variation | SS       | Df | MS       | F        | <i>P-value</i> | F crit  |
|---------------------|----------|----|----------|----------|----------------|---------|
| Between Groups      | 441.5395 | 2  | 220.7698 | 0.785081 | 0.478164       | 3.88529 |
| Within Groups       | 3374.475 | 12 | 281.2063 |          |                |         |
|                     |          |    |          |          |                |         |
| Total               | 3816.015 | 14 |          |          |                |         |

### F-Test Two-Sample for Variance

Total length (cm)

| rotar tengen (em) |         |         |           |
|-------------------|---------|---------|-----------|
| O. elongatus      | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | X       | 0.364   | 0.359     |
| <i>1991-92</i>    |         | Х       | 0.980     |
| 1999-2000         |         |         | Х         |

# t-Test: Two-Sample

| Total length (cm) |         |         |           |
|-------------------|---------|---------|-----------|
| O. elongatus      | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | X       | 0.516   | 0.240     |
| 1991-92           |         | Х       | 0.550     |
| 2000              |         |         | Х         |

|                       |           |         | males     |          | females |          |
|-----------------------|-----------|---------|-----------|----------|---------|----------|
| Length (and age) at 5 | 0% maturi | ty:     | 51.3cm    | (4.6 yr) | 63.4cm  | (3.4 yr) |
|                       |           |         |           | Jagielo  | (1994)  |          |
| % Mature: Assuming    | 50:50 sex | ratio   |           | _        |         |          |
| O. elongatus          | 1974-76   | 1991-92 | 1999-2000 | -        |         |          |
| males                 | 21        | 74      | 87        | -        |         |          |
| females               | 0         | 24      | 29        |          |         |          |



No data available for 1987



**Figure 30.** Spring length-frequency distributions of lingcod (*O. elongatus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 30.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for lingcod (*O. elongatus*) on the Point George permanent leadline transect in spring (April-June).

### ANOVA: Single Factor **SPRING** *O. elongatus* SUMMARY

| Groups    | Count | Sum    | Average  | Variance | Min | Max |
|-----------|-------|--------|----------|----------|-----|-----|
| 1974-76   | 4     | 223.12 | 55.78    | 146.0845 | 38  | 64  |
| 1991-92   | 12    | 632    | 52.66667 | 296.0606 | 30  | 75  |
| 1999-2000 | 3     | 125    | 41.66667 | 133.3333 | 35  | 55  |

ANOVA

| Source of Variation | SS       | Df | MS       | F        | P-value  | F crit   |
|---------------------|----------|----|----------|----------|----------|----------|
| Between Groups      | 379.5521 | 2  | 189.7761 | 0.766465 | 0.480977 | 3.633716 |
| Within Groups       | 3961.587 | 16 | 247.5992 |          |          |          |
|                     |          |    |          |          |          |          |
| Total               | 4341.139 | 18 |          |          |          |          |

### F-Test Two-Sample for Variance

Total length (cm)

| Total length (em) |         |         |           |
|-------------------|---------|---------|-----------|
| O. elongatus      | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | X       | 0.612   | 0.980     |
| <i>1991-92</i>    |         | Х       | 0.703     |
| 1999-2000         |         |         | Х         |

# t-Test: Two-Sample

| Total length (cm) |         |         |           |
|-------------------|---------|---------|-----------|
| O. elongatus      | 1974-76 | 1991-92 | 1999-2000 |
| 1974-76           | X       | 0.745   | 0.180     |
| 1991-92           |         | Х       | 0.319     |
| 2000              |         |         | Х         |

| Length (and age) at 5 | 0% maturi | ty:     | males<br>51.3cm | (4.6 yr)<br>Jagielo | females<br>63.4cm<br>(1994) | (3.4 yr) |
|-----------------------|-----------|---------|-----------------|---------------------|-----------------------------|----------|
| % Mature: Assuming    | 50:50 sex | ratio   |                 |                     | <b>、</b> ,                  |          |
| O. elongatus          | 1974-76   | 1991-92 | 1999-2000       |                     |                             |          |
| males                 | 79        | 45      | 9               | )                   |                             |          |
| females               | 9         | 32      | C               | )                   |                             |          |



**Figure 31.** Summer length-frequency distributions of lingcod (*O. elongatus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 31.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for lingcod (*O. elongatus*) on the Point George permanent leadline transect in summer (July-September).

| ANOVA: Single Fact                 | tor          |         |          |          |                |          |
|------------------------------------|--------------|---------|----------|----------|----------------|----------|
| SUMMER O. elongo                   | atus         |         |          |          |                |          |
| SUMMARY                            |              |         |          |          |                |          |
| Groups                             | Count        | Sum     | Average  | Variance | Min            | Max      |
| 1974-76                            | 30           | 1528.41 | 50.947   | 293.2968 | 32             | 92       |
| 1987                               | 10           | 745     | 74.5     | 439.3889 | 30             | 107      |
| 1991-92                            | 1            | 52      | 52       | #DIV/0!  | 52             | 52       |
| 1999-2000                          | 4            | 179     | 44.75    | 202.9167 | 33             | 65       |
| ANOVA                              |              |         |          |          |                |          |
| Source of Variation                | SS           | Df      | MS       | F        | <i>P-value</i> | F crit   |
| Between Groups                     | 4705.333     | 3       | 1568.444 | 4.92057  | 0.005194       | 2.832749 |
| Within Groups                      | 13068.86     | 41      | 318.7526 |          | **             |          |
| *                                  |              |         |          |          |                |          |
| Total                              | 17774.19     | 44      |          |          |                |          |
| F-Test Two-Sample f                | for Variance | e       |          |          |                |          |
| Total length (cm)                  |              |         |          |          | •              |          |
| O. elongatus                       | 1974-76      | 1987    | 1991-92  | 2000     | _              |          |
| 1974-76                            | X            | 0.391   |          | 0.871    |                |          |
| 1987                               |              | Х       |          | 0.568    |                |          |
| 1991-92                            |              |         | Х        |          |                |          |
| 2000                               |              |         |          | Х        |                |          |
|                                    |              |         |          |          |                |          |
| t-Test: Two-Sample                 |              |         |          |          |                |          |
| Total length (cm)                  | <del></del>  |         |          |          | -              |          |
| O. elongatus                       | 1974-76      | 1987    | 1991-92  | 2000     | -              |          |
| 1974-76                            | X            | 0.001   |          | 0.495    |                |          |
| 1987                               | **           | Х       |          | 0.024    |                |          |
| 1991-92                            |              |         | Х        |          |                |          |
| 2000                               | 8            | k       |          | Х        |                |          |
|                                    |              |         |          |          | 0 1            |          |
| <b>T</b> 1 ( <b>1</b> ) . <b>F</b> |              |         | males    |          | temales        |          |
| Length (and age) at 5              | 0% maturit   | y:      | 51.3cm   | (4.6 yr) | 63.4cm         | (3.4 yr) |
|                                    | 50.50        |         |          | Jagielo  | (1994)         |          |
| % Mature: Assuming                 | 50:50  sex 1 |         | 1001.02  | 2000     |                |          |
| <i>U. elongatus</i>                | 1974-76      | 1987    | 1991-92  | 2000     | -              |          |
| males                              | 50           | 92      | 100      | 22       |                |          |
| temales                            | 26           | 76      | 0        | 3        |                |          |



No data available for 1987



**Figure 32.** Fall length-frequency distributions of lingcod (*O. elongatus*) populations on Point George North permanent leadline transect. Sample sizes are number dive surveys during each time period.

**Table 32.** Summary statistics, ANOVA table, pair wise t-tests and percent mature (if males or females) for lingcod (*O. elongatus*) on the Point George permanent leadline transect in fall (October-December).

| ANOVA: Single Fac                      | ctor        |         |           |          |          |          |
|----------------------------------------|-------------|---------|-----------|----------|----------|----------|
| FALL O. elongatus                      |             |         |           |          |          |          |
| SUMMARY                                |             |         |           |          |          |          |
| Groups                                 | Count       | Sum     | Average   | Variance | Min      | Max      |
| 1974-76                                | 3           | 172.29  | 57.43     | 32.0787  | 0        | 0        |
| 1991-92                                | 3           | 154     | 51.33333  | 58.33333 | 0        | 0        |
| 1999-2000                              | 10          | 589     | 58.9      | 324.7667 | 0        | 0        |
| ANOVA                                  |             |         |           |          |          |          |
| Source of Variation                    | SS          | Df      | MS        | F        | P-value  | F crit   |
| Between Groups                         | 132.3115    | 2       | 66.15576  | 0.277095 | 0.762349 | 3.805567 |
| Within Groups                          | 3103.724    | 13      | 238.748   |          |          |          |
| Total                                  | 3236.036    | 15      |           |          |          |          |
| F-Test Two-Sample<br>Total length (cm) | for Varian  | ce      |           |          |          |          |
| O. elongatus                           | 1974-76     | 1991-92 | 1999-2000 |          |          |          |
| 1974-76                                | X           | 0.710   | 0.186     |          |          |          |
| 1991-92                                |             | Х       | 0.323     |          |          |          |
| 1999-2000                              |             |         | Х         |          |          |          |
| t-Test: Two-Sample                     |             |         |           |          |          |          |
| Total length (cm)                      |             |         |           |          |          |          |
| O. elongatus                           | 1974-76     | 1991-92 | 1999-2000 |          |          |          |
| 1974-76                                | Х           | 0.329   | 0.895     |          |          |          |
| 1991-92                                |             | Х       | 0.504     |          |          |          |
| 2000                                   |             |         | Х         | i        |          |          |
|                                        |             |         | males     |          | females  |          |
| Length (and age) at                    | 50% matur   | ity:    | 51.3cm    | (4.6 yr) | 63.4cm   | (3.4 yr) |
| % Mature: Assuming                     | g 50:50 sey | x ratio |           | Jagielo  | (1994)   |          |
| <i>O. elongatus</i>                    | 1974-76     | 1991-92 | 1999-2000 | i i      |          |          |
| males                                  | #N/A        | 59      | 65        |          |          |          |
| females                                | 3           | #N/A    | 26        |          |          |          |



**Figure 33.** Substrate complexity at the six 2000 spatial study sites. Data are grouped by site pairs. Reserves are solid bars and non-reserves are crosshatched. Sample size is number of transects for which data were collected.



**Figure 34.** Reef slope at the six 2000 spatial study sites. Data are grouped by site pairs. Reserves are solid bars and non-reserves are crosshatched. Sample size is the number of transects for which data were collected.

#### Population densities at 2000 spatial study sites

3 x 2 ANOVAs were used to compare population densities at the six sites for each species of interest. H<sub>0</sub>: mean population densities in reserve sites are equal to mean population densities in non-reserve sites, and H<sub>A</sub>: mean population densities in reserve sites are different from mean population densities in non-reserve sites. Results are presented in order of categories according to trends from population densities over time at Point George: 1) increasing populations (*S. caurinus, H. decagrammus* and *S. emphaeus*) 2) decreasing populations (*S. melanops, S. flavidus* and *S. maliger*) 3) recovering populations (*O. elongatus*) and 4) other populations (*E. lateralis* and YOY *S. caurinus / S. maliger*).

Significantly greater density (3 x 2 ANOVA: F = 10.487, p = 0.001) was found for copper rockfish (*S. caurinus*) in reserve sites compared to non-reserve sites. Kelp greenling (*H. decagrammus*) were also significantly more abundant in reserves (3 x 2 ANOVA: F = 11.656, p = 0.001). Puget Sound rockfish (*S. emphaeus*) showed an opposite trend. *S. emphaeus* had significantly greater density (3 x 2 ANOVA: F = 10.487, p = 0.005) in the *non*-reserve sites (Figure 35, Table 33).

Black rockfish (*S. melanops*) were significantly more abundant in reserves (3 x 2 ANOVA: F = 4.728, p = 0.031). Yellowtail rockfish (*S. flavidus*) did not show a significant difference (3 x 2 ANOVA: F = 1.634, p = 0.202), despite sightings only at the Shady Cove reserve site. Quillback rockfish (*S. maliger*) were more abundant in *non*-



**Figure 35.** Mean population densities at 2000 spatial study sites for populations increasing over time at Point George. Reserve sites are solid bars. Non-reserve sites are crosshatched. Sample size was forty transects (n = 40) for each site.
93

 Table 33. Mean population densities, standard errors and 3 x 2 ANOVA p-values for the six 2000 spatial study sites.

| All times & legs | George<br>R        | Neck<br>NR        | Shady<br>R        | Turn<br>NR         | Yellow<br>R       | Jones<br>NR       |           |          |
|------------------|--------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-----------|----------|
| SPECIES          | fish/ha SE         | fish/ha SE        | fish/ha SE        | fish/ha SE         | fish/ha SE        | fish/ha SE        | F-ratio I | þ        |
| O. elongatus     | 60 <u>+</u> 14.2   | 33 <u>+</u> 11.5  | 133 <u>+</u> 31.3 | 125 <u>+</u> 25.26 | 75 <u>+</u> 22.6  | 40 <u>+</u> 11.8  | 1.509     | 0.221    |
| S. caurinus      | 528 <u>+</u> 103   | 198 <u>+</u> 46.6 | 508 <u>+</u> 74.7 | 293 <u>+</u> 40.34 | 183 <u>+</u> 42.2 | 195 <u>+</u> 50.9 | 10.487    | 0.001 ** |
| S. melanops      | $0\pm 0$           | $0\pm 0$          | 43 <u>+</u> 19.2  | $0\pm 0$           | $0\pm 0$          | $0\pm 0$          | 4.728     | 0.031 *  |
| S. flavidus      | $0 \pm 0$          | $0\pm 0$          | 28 <u>+</u> 21.2  | $0\pm 0$           | $0\pm 0$          | $0\pm 0$          | 1.634     | 0.202    |
| S. emphaeus      | 2530 <u>+</u> 1011 | $2293 \pm 903$    | 2055 <u>+</u> 569 | 8833 <u>+</u> 2311 | $768 \pm 370$     | 440 <u>+</u> 192  | 8.041     | 0.005 ** |
| H. decagrammus   | 310 <u>+</u> 36.7  | 125 <u>+</u> 27.2 | 160 <u>+</u> 29   | 133 <u>+</u> 21    | $100 \pm 22.9$    | 68 <u>+</u> 16.6  | 11.656    | 0.001 ** |
| E. lateralis     | 35 <u>+</u> 18.8   | $0\pm 0$          | 25 <u>+</u> 12.3  | 3 ±2.5             | 8 <u>+</u> 5.53   | 28 <u>+</u> 16.4  | 2.490     | 0.116    |
| S. maliger       | $0\pm 0$           | 38 <u>+</u> 22.6  | 18 <u>+</u> 11.3  | $0\pm 0$           | $0\pm 0$          | 30 <u>+</u> 20.9  | 2.350     | 0.127    |
| YOY <i>S</i> .   | 10 <u>+</u> 6.98   | 328 <u>+</u> 216  | 293 <u>+</u> 199  | $0\pm 0$           | $0\pm 0$          | 48 <u>+</u> 40.2  | 0.222     | 0.638    |
| caurinus/maliger |                    |                   |                   |                    |                   |                   |           |          |

F-ratios and P values from 3 x 3 ANOVA (site pair x reserve treatment)

reserves, but this trend was not significant (3 x 2 ANOVA: F = 2.350, p = 0.127) (Figure 36, Table 33).

Lingcod (*O. elongatus*) had 35% greater mean density in reserves, but this was not a statistically significant difference (3 x 2 ANOVA: F = 1.509, p = 0.221). Striped surfperch (*E. lateralis*) did not show a consistent trend (3 x 2 ANOVA: F = 2.490, p =0.116). YOY copper / quillback rockfish (*S. caurinus* / *S. maliger*) were more abundant in *non*-reserves, but this trend was not significant (3 x 2 ANOVA: F = 0.222, p = 0.638) (Figure 37, Table 33). Additional results for 3 x 2 ANOVAs stratified by sampling time and by depth are presented in Appendix A.

### Length-frequency distributions at 2000 spatial study sites

Two-sample t-tests were used to compare length-frequency distributions for each pair of sites as well as between grouped reserve sites versus grouped non-reserve sites for each species of interest. H<sub>0</sub>: mean length in reserve sites is equal to mean length in nonreserve sites, and H<sub>A</sub>: mean length in reserve sites is different from mean length in nonreserve sites. In addition, length-frequency distributions from 1974-76 were similarly compared to grouped reserve and grouped non-reserve distributions from 2000. The 1970's data resulted from specimens collected for food analysis and are not random samples of the nearshore rocky reef populations (in contrast to the 2000 data). The 1970's food analysis specimens are representative of what bit fish hooks or were in front of



**Figure 36.** Mean population densities at 2000 spatial study sites for populations decreasing over time at Point George. Reserve sites are solid bars. Non-reserve sites are crosshatched. Sample size was forty transects (n = 40) for each site.



**Figure 37.** Mean population densities at 2000 spatial study sites for populations recovering over time at Point George and other populations. Reserve sites are solid bars. Non-reserve sites are crosshatched. Sample size was forty transects (n = 40) for each site.

spear guns, slurp guns or hand nets. However, effort was made to collect a representative sample of specimens from all life history stages present (L. Moulton, personal communication).

As in previous analyses, results were species specific. Greater mean length (t-test: p < 0.001) was found for copper rockfish (*S. caurinus*) in reserve sites compared to non-reserve sites (Figure 38, Tables 34-35). Large *S. caurinus* (>38cm), which have been reported to reach 35 years in age (Richards and Cass, 1986), have virtually disappeared since the 1970's (Figure 38). Kelp greenling (*H. decagrammus*) had no significant difference in mean length between reserves and non-reserves (t-test: p = 0.480) (Figure 39, Tables 36-37). Puget Sound rockfish (*S. emphaeus*) had greater mean length (t-test: p = 0.001) in reserves (Figure 40, Tables 38-39).

Two sample t-tests of total length for black rockfish (*S. melanops*) and yellowtail rockfish (*S. flavidus*) could not be completed since this species was sighted at only one location, the Shady Cove study site (Figures 41-42, Tables 40-43). Quillback rockfish (*S. maliger*) showed the opposite trend of most other species. *S. maliger* had greater mean length (t-test: p = 0.013) in non-reserves (Figure 43, Tables 44-45).

Greater mean length (t-test: p < 0.001) was found for lingcod (*O. elongatus*) in reserves compared to non-reserves. In addition, 43% of *O. elongatus* sighted in reserves were greater in length than 50cm, compared to only 17% in non-reserves (Figure 44,



**Figure 38.** Length-frequency distributions of copper rockfish (*S. caurinus*) at 2000 spatial study sites. Reserves are solid bars. Non-reserves are crosshatched.



**Figure 38 (cont).** Upper graph: length-frequency distributions of copper rockfish (*S. caurinus*) for all 2000 spatial study reserve and non-reserve sites. Reserves are solid bars. Non-reserves are crosshatched. Lower graph: length-frequency distributions of copper rockfish (*S. caurinus*) from the same region in the 1970's.

 Table 34. Two-sample F-tests for variance of copper rockfish (S. caurinus) total lengths.

F-Test Two-Sample for Variance, reserve/non-reserve pairs Total length (cm)

| Total length (cm) |        |      |         |      |        |       |          |              |              |
|-------------------|--------|------|---------|------|--------|-------|----------|--------------|--------------|
| S. caurinus       | George | Neck | Shady   | Turn | Yellow | Jones | Reserves | Non-reserves | 1974-76      |
| Mean              | 27.9   | 23.6 | 25.2    | 24.6 | 27.8   | 23.5  | 26.7     | 24.0         | 28.5         |
| Variance          | 33.2   | 30.5 | 26.9    | 17.4 | 18.0   | 19.7  | 28.8     | 21.5         | 55.9         |
| Observations      | 130    | 49   | 153     | 85   | 51     | 55    | 333      | 189          | 191          |
| Min               | 9      | 12   | 12      | 11   | 17     | 14    | 12       | 11           | 9            |
| Max               | 45     | 34   | 36      | 35   | 37     | 32    | 45       | 35           | 50           |
| P(F<=f) two-tail  | 0.747  |      | 0.029 * | •    | 0.742  |       | 0.026    | *            | see<br>below |

F-Test Two-Sample for Variance, 2000 vs. 1974-76 Total length (cm)

| Total length (em) |        |       |       |       |        |       |          |              |  |
|-------------------|--------|-------|-------|-------|--------|-------|----------|--------------|--|
| S. caurinus       | George | Neck  | Shady | Turn  | Yellow | Jones | Reserves | Non-reserves |  |
| P(F<=f) two-tail  | 0.002  | 0.015 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000    | 0.000        |  |
|                   | **     | *     | ***   | ***   | ***    | ***   | ***      | ***          |  |

Table 35. Two-sample t-tests of copper rockfish (S. caurinus) total lengths, and percentage of populations larger than length at 50% maturity.

t-Test: Two-Sample, reserve/non-reserve pairs Total length (cm) Equal Variance Unequi

| t-rest: rwo-Sampl | - Test: Two-Sample, reserve/non-reserve pairs |        |        |        |         |         |                       |  |  |  |  |  |
|-------------------|-----------------------------------------------|--------|--------|--------|---------|---------|-----------------------|--|--|--|--|--|
| Total length (cm) | Equal Van                                     | riance | Unequa | ıl Var | Equal V | ariance | Unequal Var           |  |  |  |  |  |
| S. caurinus       | George                                        | Neck   | Shady  | Turn   | Yellow  | Jones   | Reserves Non-reserves |  |  |  |  |  |
| P(T<=t) two-tail  | 0.000 *                                       | **     | 0.346  |        | 0.000   | ***     | 0.000 ***             |  |  |  |  |  |

t-Test: Two-Sample, 2000 vs. 1974-76 Total length (cm) All Unequal Variar

| Total length (cm) | All Unequ | Il Unequal Variance |           |           |        |              |              |              |  |  |  |  |
|-------------------|-----------|---------------------|-----------|-----------|--------|--------------|--------------|--------------|--|--|--|--|
| S. caurinus       | George    | Neck                | Shady     | Turn      | Yellow | Jones        | Reserves     | Non-reserves |  |  |  |  |
| P(T<=t) two-tail  | 0.442     | 0.000<br>***        | 0.000 *** | 0.000 *** | 0.356  | 0.000<br>*** | 0.004<br>*** | 0.000 ***    |  |  |  |  |
|                   |           |                     |           |           |        |              |              |              |  |  |  |  |

|                                   | males     | females   |                          |
|-----------------------------------|-----------|-----------|--------------------------|
| Length (and age) at 50% maturity: | 25cm(6yr) | 25cm(6yr) | Richards and Cass (1986) |

% Mature: Assuming 50:50 sex ratio

| S. caurinus | George | Neck | Shady | Turn | Yellow | Jones | Reserves | Non-reserves | 1974-76 |
|-------------|--------|------|-------|------|--------|-------|----------|--------------|---------|
| Males       | 79     | 52   | 61    | 55   | 78     | 45    | 71       | 52           | 79      |
| Females     | 79     | 52   | 61    | 55   | 78     | 45    | 71       | 52           | 79      |



**Figure 39.** Length-frequency distributions of kelp greenling (*H. decagrammus*) at 2000 spatial study sites. Reserves are solid bars. Non-reserves are crosshatched.



**Figure 39 (cont).** Upper graph: length-frequency distributions of kelp greenling (*H. decagrammus*) for all 2000 spatial study reserve and non-reserve sites. Reserves are solid bars. Non-reserves are crosshatched. Lower graph: length-frequency distributions of kelp greenling (*H. decagrammus*) from the same region in the 1970's.

 Table 36. Two-sample F-tests for variance of kelp greenling (H. decagrammus) total lengths.

F-Test Two-Sample for Variance, reserve/non-reserve pairs Total length (cm)

| H. decagrammus    | George     | Neck                    | Shady     | Turn  | Yellow | Jones | Reserves Non- | 1       | 974-76 |  |  |
|-------------------|------------|-------------------------|-----------|-------|--------|-------|---------------|---------|--------|--|--|
|                   |            |                         |           |       |        |       | reserv        | eserves |        |  |  |
| Mean              | 35.5       | 34.9                    | 35.3      | 35.0  | 33.4   | 32.3  | 34.9          | 34.3    | 36.3   |  |  |
| Variance          | 59.4       | 34.4                    | 45.4      | 36.3  | 31.7   | 58.6  | 49.0          | 41.3    | 34.3   |  |  |
| Observations      | 72         | 30                      | 42        | 36    | 36     | 21    | 150           | 87      | 66     |  |  |
| Min               | 20         | 22                      | 20        | 18    | 21     | 20    | 20            | 18      | 18     |  |  |
| Max               | 58         | 45                      | 50        | 45    | 45     | 50    | 58            | 50      | 48     |  |  |
| P(F<=f) two-tail  | 0.105      | 5 0.504 0.109 0.390 see |           |       |        |       | ee below      |         |        |  |  |
|                   |            |                         |           |       |        |       |               |         |        |  |  |
| F-Test Two-Sampl  | e for Vari | ance, 20                | 00 vs. 19 | 74-76 |        |       |               |         |        |  |  |
| Total length (cm) |            |                         |           |       |        |       |               |         |        |  |  |

| H. decagrammus   | George | Neck  | Shady | Turn  | Yellow | Jones | Reserves No | n-    |  |
|------------------|--------|-------|-------|-------|--------|-------|-------------|-------|--|
|                  |        |       |       |       |        |       | res         | erves |  |
| P(F<=f) two-tail | 0.026  | 0.959 | 0.310 | 0.826 | 0.817  | 0.110 | 0.106       | 0.434 |  |
|                  | *      |       |       |       |        |       |             |       |  |

Table 37. Two-sample t-tests of kelp greenling (H. decagrammus) total lengths, and percentage of populations larger than length at 50% maturity.

| t-Test: Two-Sampl pairs | e, reserve/ | non-rese | erve    |          |         |         |          |            |         |
|-------------------------|-------------|----------|---------|----------|---------|---------|----------|------------|---------|
| Total length (cm)       | Equal Va    | riance   | Equal V | Variance | Equal V | ariance | Equal Va | riance     |         |
| H. decagrammus          | George      | Neck     | Shady   | Turn     | Yellow  | Jones   | Reserves | Non-       |         |
|                         |             |          | -       |          |         |         |          | reserves   |         |
| P(T<=t) two-tail        | 0.690       |          | 0.843   |          | 0.525   |         | 0.480    |            |         |
| t-Test: Two-Sampl<br>76 | e, 2000 vs  | . 1974-  |         |          |         |         |          |            |         |
| Total length (cm)       | Unequal     | Equal    | Equal   | Equal    | Equal   | Equal   | Equal    | Equal Vari | ance    |
| H. decagrammus          | George      | Neck     | Shady   | Turn     | Yellow  | Jones   | Reserves | Non-       |         |
|                         |             |          |         |          |         |         | -        | reserves   |         |
| P(T<=t) two-tail        | 0.488       | 0.270    | 0.384   | 0.270    | 0.017   | 0.012   | 0.161    | 0.04       | 6       |
|                         |             |          |         |          | *       | *       |          |            | *       |
|                         |             |          | males   |          | females |         |          |            |         |
| Length (and age) a      | t 50% mat   | urity:   | 29.5cm  | (3-4yr)  | 29.5cm  | (3-4yr) | Rothro   | ck (1973)  |         |
| % Mature: Assumi        | ng 50:50 s  | ex ratio |         |          |         |         |          |            |         |
| H. decagrammus          | George      | Neck     | Shady   | Turn     | Yellow  | Jones   | Reserves | Non-       | 1974-76 |
|                         |             |          |         |          |         |         | -        | reserves   |         |
| Males                   | 80          | 84       | 89      | 92       | 81      | 63      | 82       | 8          | 2 89    |
| Females                 | 80          | 84       | 89      | 92       | 81      | 63      | 82       | 8          | 2 89    |



**Figure 40.** Length-frequency distributions of Puget Sound rockfish (*S. emphaeus*) at 2000 spatial study sites. Reserves are solid bars. Non-reserves are crosshatched.



**Figure 40 (cont).** Upper graph: length-frequency distributions of Puget Sound rockfish (*S. emphaeus*) for all 2000 spatial study reserve and non-reserve sites. Reserves are solid bars. Non-reserves are crosshatched. Lower graph: length-frequency distributions of Puget Sound rockfish (*S. emphaeus*) from the same region in the 1970's.

 Table 38. Two-sample F-tests for variance of Puget Sound rockfish (S. emphaeus) total lengths.

F-Test Two-Sample for Variance, reserve/non-reserve pairs Total length (cm)

| S. emphaeus      | George | Neck | Shady | Turn | Yellow | Jones | Reserves No | on-    | 1974-76   |
|------------------|--------|------|-------|------|--------|-------|-------------|--------|-----------|
|                  |        |      |       |      |        |       | re          | serves |           |
| Mean             | 10.4   | 7.8  | 9.9   | 10.2 | 8.7    | 8.0   | 10.0        | 9.7    | 14.8      |
| Variance         | 8.7    | 3.5  | 5.5   | 6.6  | 4.0    | 2.1   | 7.0         | 6.8    | 5.8       |
| Observations     | 585    | 553  | 572   | 2292 | 200    | 118   | 1357        | 2963   | 47        |
| Min              | 6      | 5    | 4     | 4    | 5      | 6     | 4           | 4      | 7         |
| Max              | 15     | 12   | 15    | 16   | 15     | 10    | 15          | 16     | 18        |
| P(F<=f) two-tail | 0.000  | ***  | 0.008 | * *  | 0.000  | ***   | 0.530       |        | see below |

F-Test Two-Sample for Variance, 2000 vs. 1974-76

### Total length (cm)

| S. emphaeus      | George | Neck  | Shady | Turn  | Yellow | Jones | Reserves | Non-     |  |
|------------------|--------|-------|-------|-------|--------|-------|----------|----------|--|
|                  |        |       |       |       |        |       |          | reserves |  |
| P(F<=f) two-tail | 0.093  | 0.010 | 0.724 | 0.633 | 0.089  | 0.000 | 0.457    | 0.536    |  |
|                  |        | *     |       |       |        | ***   |          |          |  |

Table 39. Two-sample t-tests of Puget Sound rockfish (S. emphaeus) total lengths, and percentage of populations larger than length at 50% maturity.

\*\*\*

t-Test: Two-Sample, reserve/non-reserve pairs

| puno     |      |      |      |     |   |
|----------|------|------|------|-----|---|
| Total le | ngth | (cm) | Unec | ual | V |

| Total length (cm) | Unequal | Var  | Unequal Var |      | Unequal Var |       | Equal Variance        |  |
|-------------------|---------|------|-------------|------|-------------|-------|-----------------------|--|
| S. emphaeus       | George  | Neck | Shady       | Turn | Yellow      | Jones | Reserves Non-reserves |  |
| P(T<=t) two-tail  | 0.000 ; | ***  | 0.012       | *    | 0.000       | ***   | 0.001 **              |  |

t-Test: Two-Sample, 2000 vs. 1974-76 Total length (cm) Equal Unequal Equal Equal Unequal Equal Equal Var Var S. emphaeus George Shady Yellow Jones Reserves Non-reserves Neck Turn P(T<=t) two-tail 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 \*\*\* \*\*\* \*\*\* \*\*\* \*\*\* \*\*\* \*\*\*

males females Total length (and age) at 50% 12.5cm (1.9yr) 12.5cm (1.9yr) Beckman (1995) maturity:

% Mature: Assuming 50:50 sex ratio

| S. emphaeus | George | Neck | Shady | Turn | Yellow | Jones | Reserves | Non-reserves | 1974-76 |
|-------------|--------|------|-------|------|--------|-------|----------|--------------|---------|
| Males       | 33     | 0    | 13    | 16   | 2      | 0     | 20       | 12           | 86      |
| Females     | 33     | 0    | 13    | 16   | 2      | 0     | 20       | 12           | 86      |



**Figure 41.** Length-frequency distributions of black rockfish (*S. melanops*) at 2000 spatial study sites. Reserves are solid bars. Non-reserves are crosshatched.



**Figure 41 (cont).** Upper graph: length-frequency distributions of black rockfish (*S. melanops*) for all 2000 spatial study reserve and non-reserve sites. Reserves are solid bars. Non-reserves are crosshatched. Lower graph: length-frequency distributions of black rockfish (*S. melanops*) from the same region in the 1970's.

 Table 40. Two-sample F-tests for variance of black rockfish (S. melanops) total lengths.

F-Test Two-Sample for Variance, reserve/non-reserve pairs Total length (cm)

| Total length (cm) |        |      |       |      |        |       |          |          |           |
|-------------------|--------|------|-------|------|--------|-------|----------|----------|-----------|
| S. melanops       | George | Neck | Shady | Turn | Yellow | Jones | Reserves | Non-     | 1974-76   |
|                   |        |      |       |      |        |       |          | reserves |           |
| Mean              |        |      | 40.4  |      |        |       | 40.4     |          | 35.0      |
| Variance          |        |      | 25.7  |      |        |       | 25.7     |          | 221.0     |
| Observations      | 0      | 0    | 11    | 0    | 0      | C     | ) 11     | (        | 0 51      |
| Min               |        |      | 0     |      |        |       | 0        |          | 10        |
| Max               |        |      | 0     |      |        |       | 0        |          | 60        |
| P(F<=f) two-tail  | NA     |      | NA    |      | NA     |       | NA       |          | see below |

## F-Test Two-Sample for Variance, 2000 vs. 1974-76 Total length (cm)

| Total length (em) |        |      |       |      |        |       |               |  |
|-------------------|--------|------|-------|------|--------|-------|---------------|--|
| S. melanops       | George | Neck | Shady | Turn | Yellow | Jones | Reserves Non- |  |
|                   |        |      |       |      |        |       | reserves      |  |
| P(F<=f) two-tail  | NA     | NA   | 0.001 | NA   | NA     | NA    | 0.001 NA      |  |
|                   |        |      | **    |      |        |       | **            |  |

**Table 41.** Two-sample t-tests of black rockfish (S. melanops) total lengths, and percentage of populations larger than length at 50% maturity.

| t-Test: Two-Sampl         | e, reserve | /non-re  | serve           |          |                   |          |                  |                |          |
|---------------------------|------------|----------|-----------------|----------|-------------------|----------|------------------|----------------|----------|
| pairs                     |            |          |                 |          |                   |          |                  |                |          |
| Total length (cm)         |            |          |                 |          |                   |          |                  |                |          |
| S. melanops               | George     | Neck     | Shady           | Turn     | Yellow            | Jones    | Reserves N       | on-            |          |
| *                         | U          |          |                 |          |                   |          | re               | eserves        |          |
| P(T<=t) two-tail          | NA         |          | NA              |          | NA                |          | NA               |                |          |
| t-Test: Two-Samp<br>76    | e, 2000 v  | s. 1974- |                 |          |                   |          |                  |                |          |
| Total length (cm)         |            |          | Unequal         | var      |                   |          | Unequal va       | r              |          |
| S. melanops               | George     | Neck     | Shady           | Turn     | Yellow            | Jones    | Reserves N       | on-            |          |
| _                         | -          |          |                 |          |                   |          | re               | eserves        |          |
| P(T<=t) two-tail          | NA         | NA       | 0.043           | NA       | NA                | NA       | 0.043 N          | A              |          |
|                           |            |          | *               |          |                   |          | *                |                |          |
| Length (and age) a        | t 50% ma   | turity:  | males<br>38.3cm | (6.3 yr) | females<br>42.2cm | (7.9 yr) | Wallace a        | and Taggar     | t (1994) |
| % Mature: Assumi<br>ratio | ng 50:50   | sex      |                 |          |                   |          |                  |                |          |
| S. melanops               | George     | Neck     | Shady           | Turn     | Yellow            | Jones    | Reserves N<br>re | on-<br>eserves | 1974-76  |
| Males                     |            | 63       | 3               |          |                   | 63       | 3                |                | 70       |
| Females                   |            | 29       | )               |          |                   | 29       | )                |                | 70       |



**Figure 42.** Length-frequency distributions of yellowtail rockfish (*S. flavidus*) at 2000 spatial study sites. Reserves are solid bars. Non-reserves are crosshatched.



**Figure 42 (cont).** Upper graph: length-frequency distributions of yellowtail rockfish (*S. flavidus*) for all 2000 spatial study reserve and non-reserve sites. Reserves are solid bars. Non-reserves are crosshatched. Lower graph: length-frequency distributions of yellowtail rockfish (*S. flavidus*) from the same region in the 1970's.

 Table 42. Two-sample F-tests for variance of yellowtail rockfish (S. flavidus) total lengths.

F-Test Two-Sample for Variance, reserve/non-reserve pairs Total length (cm)

| Total length (cm) |        |      |       |      |        |       |       |           |    |         |
|-------------------|--------|------|-------|------|--------|-------|-------|-----------|----|---------|
| S. flavidus       | George | Neck | Shady | Turn | Yellow | Jones | Reser | rves Non- | 19 | 74-76   |
|                   |        |      |       |      |        |       |       | reserves  | 5  |         |
| Mean              |        |      | 23.0  |      |        |       | -     | 23.0      |    | 30.3    |
| Variance          |        |      | 2.0   |      |        |       |       | 2.0       |    | 75.5    |
| Observations      | 0      | 0    | 11    | 0    | 0      | (     | )     | 11        | 0  | 85      |
| Min               |        |      | 20    |      |        |       |       | 20        |    | 8       |
| Max               |        |      | 24    |      |        |       |       | 24        |    | 41      |
| P(F<=f) two-tail  |        |      | NA    |      |        |       | NA    |           | se | e below |

F-Test Two-Sample for Variance, 2000 vs. 1974-76 Total length (cm)

| S. flavidus      | George | Neck | Shady | Turn | Yellow | Jones | Reserves Non- |  |
|------------------|--------|------|-------|------|--------|-------|---------------|--|
|                  |        |      |       |      |        |       | reserves      |  |
| P(F<=f) two-tail | NA     | NA   | 0.000 | NA   | NA     | NA    | 0.000 NA      |  |
|                  |        |      | ***   |      |        |       | ***           |  |

**Table 43.** Two-sample t-tests of yellowtail rockfish (S. flavidus) total lengths, and percentage of populations larger than length at 50% maturity.

| t-Test: Two-Samp       | le, reserve | e/non-re | serve        |      |         |       |          |          |         |
|------------------------|-------------|----------|--------------|------|---------|-------|----------|----------|---------|
| pairs                  |             |          |              |      |         |       |          |          |         |
| Total length (cm)      |             |          |              |      |         |       | _        |          |         |
| S. flavidus            | George      | Neck     | Shady        | Turn | Yellow  | Jones | Reserves | Non-     |         |
|                        |             |          |              |      |         |       |          | reserves |         |
| $P(T \le t)$ two-tail  | NA          |          | NA           |      | NA      |       | NA       |          |         |
| t-Test: Two-Samp<br>76 | le, 2000 v  | s. 1974- | -            |      |         |       |          |          |         |
| Total length (cm)      |             |          | Unequal      | var  |         |       | Unequal  | var      |         |
| S. flavidus            | George      | Neck     | Shady        | Turn | Yellow  | Jones | Reserves | Non-     |         |
|                        | -           |          |              |      |         |       |          | reserves |         |
| P(T<=t) two-tail       | NA          | NA       | 0.000<br>*** | NA   | NA      | NA    | 0.000    | NA       |         |
| Length (and age) a     | at 50% ma   | uturity: | males        |      | females |       |          |          |         |
| % Mature: Assum ratio  | ing 50:50   | sex      |              |      |         |       |          |          |         |
| S. flavidus            | George      | Neck     | Shady        | Turn | Yellow  | Jones | Reserves | Non-     | 1974-76 |
|                        |             |          |              |      |         |       |          | reserves |         |
| Males                  |             |          | 0            |      |         |       | 0        |          | 48      |
| Females                |             |          | 0            |      |         |       | 0        |          | 38      |



**Figure 43.** Length-frequency distributions of quillback rockfish (*S. maliger*) at 2000 spatial study sites. Reserves are solid bars. Non-reserves are crosshatched.



**Figure 43 (cont).** Upper graph: length-frequency distributions of quillback rockfish (*S. maliger*) for all 2000 spatial study reserve and non-reserve sites. Reserves are solid bars. Non-reserves are crosshatched. Lower graph: length-frequency distributions of quillback rockfish (*S. maliger*) from the same region in the 1970's.

 Table 44. Two-sample F-tests for variance of quillback rockfish (S. maliger) total lengths.

F-Test Two-Sample for Variance, reserve/non-reserve pairs Total length (cm)

| S. maliger       | George | Neck | Shady | Turn | Yellow | Jones | Reserves N | on-     | 1974-76   |
|------------------|--------|------|-------|------|--------|-------|------------|---------|-----------|
|                  |        |      |       |      |        |       | re         | eserves |           |
| Mean             |        | 20.8 | 15.0  |      |        | 19.1  | 15.0       | 19.8    | 30.6      |
| Variance         |        | 16.8 | 8.0   |      |        | 11.2  | 8.0        | 13.6    | 33.7      |
| Observations     | 0      | 8    | 5     | 0    | 0      | 10    | 5          | 18      | 125       |
| Min              |        | 16   | 12    |      |        | 13    | 12         | 13      | 15        |
| Max              |        | 26   | 18    |      |        | 24    | 18         | 26      | 44        |
| P(F<=f) two-tail | NA     | NA   |       | NA   |        |       | 0.651      |         | see below |

F-Test Two-Sample for Variance, 2000 vs. 1974-76

| Total length (cm) |        |      |    |
|-------------------|--------|------|----|
| S. maliger        | George | Neck | Sh |

| Total length (em) |        |       |       |      |        |       |             |       |  |
|-------------------|--------|-------|-------|------|--------|-------|-------------|-------|--|
| S. maliger        | George | Neck  | Shady | Turn | Yellow | Jones | Reserves No | n-    |  |
|                   |        |       |       |      |        |       | res         | erves |  |
| P(F<=f) two-tail  | NA     | 0.331 | 0.166 | NA   | NA     | 0.075 | 0.166       | 0.034 |  |
|                   |        |       |       |      |        |       |             | *     |  |

Table 45. Two-sample t-tests of quillback rockfish (S. maliger) total lengths, and percentage of populations larger than length at 50% maturity.

| t-Test: Two-Samp<br>pairs | le, reserve | /non-res  | erve            |         |                   |        |            |            |          |     |
|---------------------------|-------------|-----------|-----------------|---------|-------------------|--------|------------|------------|----------|-----|
| Total length (cm)         |             |           |                 |         |                   |        | Equal Va   | ariance    |          |     |
| S. maliger                | George      | Neck      | Shady           | Turn    | Yellow            | Jones  | Reserves   | Non-       |          |     |
|                           |             |           |                 |         |                   |        |            | reserves   |          |     |
| P(T<=t) two-tail          | NA          |           | NA              |         | NA                |        | 0.013      | *          |          |     |
| t-Test: Two-Samp<br>76    | le, 2000 v  | s. 1974-  |                 |         |                   |        |            |            |          |     |
| Total length (cm)         |             | Equal     | Equal           | Equal   | Equal             | Equal  | Equal      | Unequal '  | Variance |     |
| S. maliger                | George      | Neck      | Shady           | Turn    | Yellow            | Jones  | Reserves   | Non-       |          |     |
| -                         | -           |           |                 |         |                   |        |            | reserves   |          |     |
| P(T<=t) two-tail          | NA          | 0.000     | 0.000           | NA      | NA                | 0.000  | 0.000      | 0.0        | 000      |     |
|                           |             | ***       | * ***           |         |                   | ***    | ***        | *          | ***      |     |
| Length (and age) a        | .t 50% ma   | turity:   | males<br>29.5cm | n(13yr) | females<br>28.1cm | (11yr) | Richards a | and Cass ( | 1986)    |     |
| % Mature: Assumi          | ing 50:50   | sex ratio |                 |         |                   |        |            |            |          |     |
| S. maliger                | George      | Neck      | Shady           | Turn    | Yellow            | Jones  | Reserves   | Non-       | 1974     | -76 |
| -                         | -           |           | -               |         |                   |        |            | reserves   |          |     |
| Males                     |             | (         | ) 0             | )       |                   | 0      | 0          |            | 0        | 56  |
| Females                   |             | (         | ) 0             | )       |                   | 0      | 0          |            | 0        | 64  |



**Figure 44.** Length-frequency distributions of lingcod (*O. elongatus*) at 2000 spatial study sites. Reserves are solid bars. Non-reserves are crosshatched.



**Figure 44 (cont).** Upper graph: length-frequency distributions of lingcod (*O. elongatus*) for all 2000 spatial study reserve and non-reserve sites. Reserves are solid bars. Non-reserves are crosshatched. Lower graph: length-frequency distributions of lingcod (*O. elongatus*) from the same region in the 1970's.

 Table 46. Two-sample F-tests for variance of lingcod (O. elongatus) total lengths.

F-Test Two-Sample for Variance, reserve/non-reserve pairs Total length (cm)

| Total length (chi)    |         |       |       |      |        |       |               |       |           |
|-----------------------|---------|-------|-------|------|--------|-------|---------------|-------|-----------|
| O. elongatus          | George  | Neck  | Shady | Turn | Yellow | Jones | Reserves Non- |       | 1974-76   |
|                       |         |       |       |      |        |       | resei         | ves   |           |
| Mean                  | 43.0    | 52.1  | 64.7  | 47.6 | 49.7   | 39.2  | 55.6          | 46.5  | 56.3      |
| Variance              | 82.4    | 307.1 | 322.0 | 89.3 | 159.2  | 21.6  | 305.2         | 114.0 | 392.7     |
| Observations          | 16      | 7     | 35    | 36   | 20     | 11    | 71            | 54    | 34        |
| Min                   | 30      | 35    | 40    | 30   | 35     | 33    | 30            | 30    | 30        |
| Max                   | 60      | 85    | 110   | 70   | 80     | 50    | 110           | 85    | 99        |
| $P(F \le f)$ two-tail | 0.036 * | ĸ     | 0.000 | ***  | 0.003  | **    | 0.000 ***     |       | see below |

F-Test Two-Sample for Variance, 2000 vs. 1974-76

Total length (cm)

| Total length (em) |        |       |       |       |        |       |            |         |  |
|-------------------|--------|-------|-------|-------|--------|-------|------------|---------|--|
| O. elongatus      | George | Neck  | Shady | Turn  | Yellow | Jones | Reserves 1 | Von-    |  |
|                   |        |       |       |       |        |       | 1          | eserves |  |
| P(F<=f) two-tail  | 0.002  | 0.820 | 0.567 | 0.000 | 0.041  | 0.000 | 0.375      | 0.000   |  |
|                   | **     |       |       | ***   | *      | ***   |            | ***     |  |

**Table 47.** Two-sample t-tests of lingcod (*O. elongatus*) total lengths, and percentage of populations larger than length at 50% maturity.

| t-Test: Two-Sampl                                                                         | e, reserve        | non-res  | serve    |                 |                 |                 |          |                  |          |          |  |
|-------------------------------------------------------------------------------------------|-------------------|----------|----------|-----------------|-----------------|-----------------|----------|------------------|----------|----------|--|
| Total length (cm)                                                                         | Unequal           | Var      | Unequa   | l Var           | Unequa          | l Var           | Unequal  | Var              |          |          |  |
| O. elongatus                                                                              | George            | Neck     | Shady    | Turn            | Yellow          | Jones           | Reserves | Non-             |          |          |  |
|                                                                                           | 0.021             |          | 0.000    | * * *           | 0.002           | **              | 0.000    | reserves         |          |          |  |
| $P(1 \le t)$ two-tail                                                                     | 0.231             |          | 0.000    | ***             | 0.003           | **              | 0.000    |                  |          |          |  |
| t-Test: Two-Sample, 2000 vs. 1974-<br>76                                                  |                   |          |          |                 |                 |                 |          |                  |          |          |  |
| Total length (cm)                                                                         | Unequa I<br>l Var | Equal    | Equal    | Unequa<br>1 Var | Unequa<br>1 Var | Unequa<br>l Var | Equal    | Unequal<br>Var   |          |          |  |
| O. elongatus                                                                              | George            | Neck     | Shady    | Turn            | Yellow          | Jones           | Reserves | Non-<br>reserves |          |          |  |
| P(T<=t) two-tail                                                                          | 0.002<br>**       | 0.613    | 0.068    | 0.025           | 0.140           | 0.000<br>***    | 0.857    | 0.               | 011<br>* |          |  |
| malesfemalesLength (and age) at 50% maturity:51.3cm (4.6 yr)63.4cm (3.4 yr)Jagielo (1994) |                   |          |          |                 |                 |                 |          | o (1994)         |          |          |  |
| % larger than lengt maturity:                                                             | th at 50%         |          |          |                 |                 |                 |          |                  |          |          |  |
| O. elongatus                                                                              | George            | Neck     | Shady    | Turn            | Yellow          | Jones           | Reserves | Non-             | 1974     | -76      |  |
|                                                                                           | 10                | 20       | ( )      | 20              | 25              | 0               |          | reserves         | 17       |          |  |
| Females                                                                                   | 18                | 32<br>19 | 64<br>45 | 20              | 25<br>14        | 0               | 43<br>26 |                  | 6        | 53<br>41 |  |
|                                                                                           |                   |          |          | -               |                 |                 |          |                  |          |          |  |

Tables 46-47). Striped surfperch (*E. lateralis*) had no significant difference in mean length between reserves and non-reserves (t-test: p = 0.485) (Figure 45, Table 48). YOY copper / quillback rockfish (*S. caurinus / S. maliger*) had also greater mean length in non-reserves (t-test: p < 0.001) (Figure 46, Table 49).

# Patterns of YOY *S. caurinus / S. maliger* abundance and length-frequency distribution observed in the 2000 spatial study

Of the six spatial study sites surveyed, three had relatively substantial recruitment of YOY *S. caurinus / S. maliger* complex fishes. Between 11 and 66 YOY were sighted at these sites during all surveys. The other three sites had one or zero YOY sighted during the 2000 spatial study. The three sites that had substantial recruitment of YOY were Neck Point, Shady Cove and Jones Island. In every case, one site in each reserve/non-reserve pair had relatively substantial YOY recruitment and the other site in the pair had none or extremely little. The sites with recruitment were also split amongst reserves and nonreserves, specifically one reserve and two non-reserves. Length-frequency data for the YOY *S. caurinus / S. maliger* complex are presented with all sampling dates grouped (Figure 50) as well as by sampling date to examine changes in abundance and lengthfrequency distribution over time (Figures 47-49).



**Figure 45.** Length-frequency distributions of striped surfperch (*E. lateralis*) at 2000 spatial study sites. Reserves are solid bars. Non-reserves are crosshatched.

**Table 48.** Two-sample F-test for variance and two-sample t-tests for striped surfperch (*E. lateralis*) total lengths, and percentage of populations larger than length at 50% maturity.

## F-Test Two-Sample for Variances

#### Total length (cm)

| E. lateralis     | George | Neck | Shady | Turn | Yellow | Jones | Reserves No | n-     |
|------------------|--------|------|-------|------|--------|-------|-------------|--------|
|                  |        |      |       |      |        |       | res         | serves |
| Mean             | 19.4   |      | 18.9  | 20.0 | 21.7   | 21.4  | 19.5        | 21.3   |
| Variance         | 71.3   |      | 16.3  |      | 22.3   | 31.0  | 42.6        | 26.8   |
| Observations     | 13     | 0    | 10    | 1    | 3      | 7     | 26          | 8      |
| Min              | 6      |      | 8     | 20   | 18     | 15    | 6           | 15     |
| Max              | 33     |      | 22    | 20   | 27     | 30    | 33          | 30     |
| P(F<=f) two-tail | NA     |      | NA    |      | 0.952  |       | 0.545       |        |

| Total length (cm)   |                      |          |                       |      |                     |       |                        |  |  |
|---------------------|----------------------|----------|-----------------------|------|---------------------|-------|------------------------|--|--|
| E. lateralis        | George               | Neck     | Shady                 | Turn | Yellow              | Jones | Reserves Non-          |  |  |
|                     |                      |          |                       |      |                     |       | reserves               |  |  |
| P(T<=t) two-tail NA |                      |          | NA                    |      | 0.950               |       | 0.485                  |  |  |
| Length (and age)    | males<br>28.6cm(3vr) |          | females<br>28.6cm(3v) | r)   | Karnov et al (1995) |       |                        |  |  |
| Lengen (und uge)    | at 2070 ma           | itanity. | 20.00m(391)           |      | 20.00m(3)           | .,    | 1 un pot et ul. (1995) |  |  |

% Mature: Assuming 50:50 sex ratio

| E. lateralis | George | Neck | Shady | Turn | Yellow | Jones | Reserves | Non-     |
|--------------|--------|------|-------|------|--------|-------|----------|----------|
|              |        |      |       |      |        |       |          | reserves |
| Males        | 20     |      | 0     | 0    | 0      | 5     | 11       | 4        |
| Females      | 20     |      | 0     | 0    | 0      | 5     | 11       | 4        |


**Figure 46.** Length-frequency distributions of YOY copper / quillback rockfish (*S. caurinus / S. maliger*) at 2000 spatial study sites. Reserves are solid bars. Non-reserves are crosshatched.



**Figure 46 (cont).** Upper graph: length-frequency distributions of YOY copper / quillback rockfish (*S. caurinus / S. maliger*) for all 2000 spatial study reserve and non-reserve sites. Reserves are solid bars. Non-reserves are crosshatched. Lower graph: length-frequency distributions of YOY copper / quillback rockfish (*S. caurinus / S. maliger*) from the same region in the 1970's.

Table 49. Two-sample F-test for variance and two-sample t-tests for YOY copper / quillback rockfish (S. caurinus / S. maliger) total lengths.

F-Test Two-Sample for Variance, reserve/non-reserve pairs

| F-Test Two-Samp                                                                                                | le for varia | nce, reser | ve/non- | reserve | e pairs |       |          |              |          |
|----------------------------------------------------------------------------------------------------------------|--------------|------------|---------|---------|---------|-------|----------|--------------|----------|
| YOY                                                                                                            | George       | Neck       | Shady   | Turn    | Yellow  | Jones | Reserves | Non-reserves | 974-76   |
| Mean                                                                                                           | 2.0          | 4.8        | 2.2     |         |         | 3.5   | 2.3      | 4.6          | 5.8      |
| Variance                                                                                                       |              | 1.3        | 0.9     |         |         | 0.7   | 1.4      | 1.4          | 0.9      |
| Observations                                                                                                   | 1            | 66         | 60      | 0       | 0       | 11    | 62       | 77           | 4        |
| Min                                                                                                            | 2            | 2          | 1       |         |         | 3     | 1        | 2            | 5        |
| Max                                                                                                            | 2            | 6          | 7       |         |         | 5     | 8        | 6            | 7        |
| $P(F \le f)$ two-tail                                                                                          | NA           |            | NA      |         | NA      |       | 0.947    | S            | ee below |
| F-Test Two-Sample for Variance, 2000 vs. 1974-76                                                               |              |            |         |         |         |       |          |              |          |
| YOY                                                                                                            | George       | Neck       | Shady   | Turn    | Yellow  | Jones | Reserves | Non-reserves |          |
| $P(F \le f)$ two-tail                                                                                          | NA           | 0.890      | 0.813   | NA      | NA      | 0.619 | 0.807    | 0.819        |          |
| t-Test: Two-Sample, reserve/non-reserve pairs Equal Variance                                                   |              |            |         |         |         |       |          |              |          |
| YOY                                                                                                            | George       | Neck       | Shady   | Turn    | Yellow  | Jones | Reserves | Non-reserves |          |
| P(T<=t) two-tail                                                                                               | NA           |            | NA      |         | NA      |       | 0.000    | ***          |          |
| t-Test: Two-Sample, 2000 vs. 1974-76<br>Total length (cm) Unequal Equal Equal Equal Equal Equal Equal Variance |              |            |         |         |         |       |          |              |          |
| YOY                                                                                                            | George       | Neck       | Shady   | Turn    | Yellow  | Jones | Reserves | Non-reserves |          |
| P(T<=t) two-tail                                                                                               | NA           | 0.135      | 0.004   | NA      | NA      | 0.009 | 0.003    | 0.091        |          |
|                                                                                                                |              |            | **      |         |         | **    | **       |              |          |



**Figure 47.** Length-frequency distributions of YOY copper / quillback rockfish (*S. caurinus / S. maliger*) by sampling date at the Neck Point spatial study non-reserve site.



None on August survey



**Figure 48.** Length-frequency distributions of YOY copper / quillback rockfish (*S. caurinus / S. maliger*) by sampling date at the Shady Cove spatial study reserve site.



None on August survey



**Figure 49.** Length-frequency distributions of YOY copper / quillback rockfish (*S. caurinus / S. maliger*) by sampling date at the Jones Island spatial study non-reserve site.



**Figure 50.** Summary over time of 2000 spatial study length-frequency distributions for YOY copper / quillback rockfish (*S. caurinus / S. maliger*) by site.

### DISCUSSION

### Population densities in the Pt. George study site over time

In summary, populations of *S. caurinus, H. decagrammus* and *S. emphaeus* were significantly increasing at the time of reserve implementation and increased at a faster rate after reserve implementation. Populations of *S. flavidus, S. melanops* and *S. maliger* had disappeared or were decreasing at reserve implementation and all three had disappeared by 1999. *O. elongatus* were decreasing before reserve implementation and recovered after reserve implementation.

Reduced fishing pressure in reserves appears to be the process driving the trends in *S. caurinus*, *H. decagrammus* and *O. elongatus*. This may be the result of the reserves. However, there is another possibility. Increases in density and length of these species may be the result of reductions in overall bottomfishing effort. Boat based bottomfish angler trips reached a peak in the 1980's. In addition, there appears to be very little current bottomfishing effort. Surveys of the spatial study sites during 2001 from April to October found no fishing effort in reserves and close to none in the non-reserve reference sites. However, the time of year when salmon fishing is not open and angler pressure is most likely to shift to bottomfish was not surveyed (K. Koski, Soundwatch and The Whale Museum, personal communication). Nevertheless, reduction of overall bottomfishing effort does not explain the greater densities and larger sizes seen in reserve sites during the 2000 spatial study. Fluctuations in population density of *O. elongatus* may have been caused by a strong year class from the early 1990's (L. Britt, University of Washington Graduate Student, personal communication), but this does not explain the greater densities of larger *O. elongatus* in reserves. It appears more likely that this result has been caused by lower mortality in reserves due to restricted fishing since the San Juan Islands Marine Preserves were established in 1990. Furthermore, given that annual bottomfish angler trips reached a peak in the 1980's due to a dwindling salmon resource and greater restrictions on salmon fishing (Palsson *et al.* 1997) *O. elongatus* have been subject to fishing pressure. It appears likely that the reserve status is causing decreased mortality of *O. elongatus* inside reserves, and increasing population density inside reserves over time.

The observed trends have not been reversed after ten years of fishing restriction, except for *O. elongatus*, which indicates that the reserves may be too small, inadequately enforced, or ten years is not enough time for these slow growing and late maturing fish to rebound. In addition, climate regime shifts may drive the observed trends. Shifting climate regimes seems the most likely explanation of trends in the schooling species: *S. melanops, S. flavidus* and *S. emphaeus*.

### Length-frequency distributions in the Point George study site over time

Trends in length of *S. caurinus* before reserves were mostly increasing, with the exception of summer. Summer was the one season that had 1987 data. It is possible that the apparent increases for other seasons from the 1970's to 1991-92 were the result of

declining bottomfishing effort starting in 1980's. In all seasons after reserves were formed (1991-92 to 1999-2000), lengths of *S. caurinus* at Point George decreased. This atypical decrease in length after reserve formation may caused by increased recruitment during the 1990's.

Trends in *H. decagrammus* lengths before reserves were mixed, and fluctuated greatly with season. This species generally increased in length after reserves were implemented.

In general, trends in lengths of *S. emphaeus* over time were mixed, and seemed to be dominated by variability in recruitment. When recruitment was greater, mean lengths were smaller and when recruitment was lesser, mean lengths were greater. Historical data concerning lengths of *S. emphaeus* are limited and prevent more detailed analysis of trends in lengths of *S. emphaeus* over time.

Combined with the first analysis, it appears that *S. melanops* may have disappeared from this site before reserve-status, and did not recover with reserve-status. A similar conclusion can be drawn for *S. flavidus*. *S. maliger* exhibits the same pattern although there is evidence of this species at the beginning of the reserve period. Overall, reserve status did not reverse the density decline of these species, although in the case of *S. flavidus* lengths were significantly increasing in the before-reserve period. *O. elongatus* had mixed trends before reserves and after reserves lengths generally increased.

The researcher who provided the 1987 data (Caselle 1987) cautioned that the data were collected during an undergraduate's first crack at fish ecology research. Lengths reported seem to be consistently overestimated, especially for *H. decagrammus* and *S. emphaeus*, which show fish larger than maximum reported lengths. These data were included despite these problems because of the rare nature of historical data of this type.

# Comparison of habitat and fishing activity between 2000 spatial study sites

Habitat appeared similar between paired sites. These are important results in order to ensure accurate testing of the reserve/non-reserve treatment, and avoid confounding microhabitat effects. Site pairs are comparable in study area size, exposure, bathymetry and substrate complexity. Site pairs had no statistically significant difference on reef slope, except Point George has steeper reef slope than Neck Point. The Shady Cove / Turn Island pair has especially favorable high-relief rocky reef fish habitat (i.e. high substrate complexity). This may explain the persistence of *S. melanops* and *S. flavidus* at this site.

All observed fishing was at non-reserves. Jones Island in particular had fishing more often than the other non-reserve sites. This is probably due to nearly constant recreational use of the area during summer months due to the mooring buoys within 100m of the study site. Pleasure boats up to approximately 40 feet in length were frequently observed on these moorings, and these boaters often launched dinghies to go fishing in the immediate area.

# Population densities for 2000 spatial study sites

For populations which increased over time in the Point George time-series study (*S. caurinus, H. decagrammus,* and *S. emphaeus*) there were two trends. *S. caurinus* and *H. decagrammus* were more abundant in reserves. Populations of these two species were healthy before reserves and benefited when reserves were implemented. *S. emphaeus* were also more abundant in reserves for two of three site pairs, but overall were more abundant in *non*-reserves because of one site, Turn Island. A possible explanation for this trend is predation of *S. emphaeus* by *O. elongatus*. Stomachs of *O. elongatus* collected in the study area in the last ten years have been found to contain *S. emphaeus* (W. Palsson, Washington Department of Fish and Wildlife, personal communication), and *O. elongatus* were most abundant and largest at Turn's pair, Shady Cove. Perhaps if the densities and sizes of *O. elongatus* were the same between the Shady-Turn pair, the density of *S. emphaeus* would be the same as well.

For populations which decreased over time in the Point George time-series study (*S. melanops, S. flavidus* and *S. maliger*) there were two trends. *S. melanops* and *S. flavidus* were more abundant in reserves, but present only at one site, Shady Cove. Possible explanations include: 1) the Shady reserve has particularly good habitat, 2) these

species were too depleted at reserve implementation to recover, 3) these species move outside of reserves and are caught, and 4) the 1970's climate regime shift adversely affected their recruitment. *S. maliger* were more abundant in non-reserves, and they were found only in sites with high YOY recruitment. It appears recruitment dynamics are structuring the patterns of abundance for *S. maliger*, at least within working SCUBA depths.

For the population that recovered in the Point George time-series study, *O. elongatus*, population densities were greater in reserves in all three cases and 35% greater in aggregate, but this difference was not statistically significant.

The two populations with no time-series data, *E. lateralis* and YOY *S. caurinus / S. maliger*, had different trends. *E. lateralis* appear unaffected by reserves. This is logical for a species that is not fished for in the study sites and does not appear to interact with other species of interest. YOY *S. caurinus / S. maliger* were more abundant in nonreserves. Perhaps this trend is the result of greater predation in reserves. Predators such as large *S. caurinus* and *O. elongatus* were more abundant in reserves.

# Length-frequency distributions for spatial study sites in 2000 and 1974-76 from the same region

For populations that increased over time in the Point George time-series study (*S. caurinus, H. decagrammus, and S. emphaeus*) there were three different trends in 2000

length-frequency distributions. *S. caurinus* were larger in reserves, but only one fish greater than 37cm was sighted in 2000 compared to many in the 1970's. In the future, larger individuals could become more abundant in reserves as *S. caurinus* can live to 35 years (Richards and Cass, 1986). *H. decagrammus* were not different in reserve versus non-reserve or compared to the 1970's. Overall, *S. emphaeus* were larger in reserves, but on a site-by-site basis they were larger where *O. elongatus* were smaller.

Populations that decreased over time in the Point George time-series study (*S. melanops, S. flavidus* and *S. maliger*) each had different trends in 2000 length-frequency distribution. First, *S. melanops* and *S. flavidus* were both sighted only in one reserve site, Shady Cove. However, *S. melanops* in 2000 were shifted towards the high end of the length range present in the 1970's, while *S. flavidus* were shifted towards the low end of the length range present in the 1970's. It seems that *S. melanops* in the study area are recruitment limited and the reserve is preserving the presence of a few old individuals. *S. flavidus* appear to have recently begun recruiting after many years of zero recruitment, perhaps in response to the recent climate regime shift. *S. maliger* were larger in non-reserves, and 2000 distributions lacked larger (reproductive) individuals compared to the 1970's distributions.

The population that recovered in the Point George time-series study, *O. elongatus*, was larger in reserves (including 3 times more reproductive sized individuals).

Distributions in reserves were similar to historical distributions while non-reserves lacked larger length-classes present in the other two samples.

The populations that do not have time series data, *E. lateralis* and YOY *S. caurinus / S. maliger*, showed two different trends. Length-frequency distributions of *E. lateralis* in reserves compared to non-reserves were not different. YOY *S. caurinus / S. maliger* were larger in non-reserves and present in the same locations as age 1+ *S. maliger*, which was probably due to greater predation in reserve sites from larger and more abundant *S. caurinus and O. elongatus*.

# Patterns of 2000 YOY S. caurinus / S. maliger abundance and length-frequency distributions by sampling date and site

Substantial numbers YOY *S. caurinus / S. maliger* fishes were sighted in three of the six 2000 spatial study sites, Neck Point, Shady Cove and Jones Island. The other three sites had zero or one YOY sighted during the 2000 spatial study. In every case, one site in a pair had high recruitment and the other had little or none at all. Furthermore, recruitment did not appear dependent on reserve or non-reserve status. High recruitment sites were one reserve and two non-reserves.

In both the non-reserve sites with high recruitment, a pattern of accumulation over time was evident. With each subsequent sample date, abundance and length generally increased. In the reserve site with high recruitment, there appeared to be a large initial pulse of YOY recruits that became less abundant at subsequent sampling dates. It seems that mortality of YOY recruits was greater in the reserve site.

# Effect of reserves on demographic patterns of each target species

**Copper rockfish (***S. caurinus***)** are a commonly targeted bottomfish and are often bycatch of anglers targeting lingcod. The virtual disappearance of *S. caurinus* >38cm (a 45cm individual was sighted during the 2000 survey) is important to note, as fish this size were more common in the 1970's. This trend indicates increased mortality of larger, more fecund individuals since the 1970's, probably due to fishing pressure. This study shows that duration of protection needed to regenerate 1970's levels of abundance of *S. caurinus* individuals >38cm is probably longer than 10 years, which makes sense for a species that can live to be 35 years old (Richards and Cass 1986). Given more time, *S. caurinus* >38cm may become more abundant in reserves.

While there were reproductive adult *S. caurinus* in both reserves and nonreserves, densities were greater in reserves—especially for larger length classes. Given the non-linear increase of *S. caurinus* fecundity as a function of length (DeLacy *et al.* 1964; Washington *et al.* 1978), reserves contain greater reproductive potential than nonreserves. The term "reproductive potential" is used to describe the number of eggs produced per area of habitat by a population (Paddack and Estes 2000). The limitation of using this technique to extrapolate further is that the number of viable larvae produced per area could be different from reproductive potential, especially if fecundity declines at the upper bounds of size and longevity as has been found for Atka mackerel (*Pleurogrammus monoterygius*) (McDermott 2001). However, the relationship between reproductive potential and number of viable larvae produced per area for species of interest in this study is unknown. For the sake of argument, let us assume that reproductive potential has a linear relationship with the number of viable larvae produced per area.

During the spring of 2000, *Sebastes* larvae identified as *S. caurinus / S. maliger* complex were most abundant in the middle of San Juan Channel, and abundance increased with increasing distance from shore (Chasco *et al.* 2000). This trend indicates that planktonic larvae of the *S. caurinus / S. maliger* complex in San Juan Channel may be contained in a common larval pool. Therefore, larvae may be dispersing from where they are released to this common pool, and then settling out as juveniles throughout San Juan Channel. If this is correct (and since fish in reserves may contribute a disproportionately greater share of larvae to the common pool than the area of rocky reef habitat encompassed by reserves indicates) reserves may supply a disproportionately larger share of *S. caurinus* larvae to both reserve and non-reserve areas.

**Kelp greenling** (*H. decagrammus*) appear not to be heavily sought after by anglers. Some locals said they do not consider them good eating and usually throw them back. Survivorship of caught and released individuals should be high. *H. decagrammus*, like all members of the *Hexagrammidae* lack a swim bladder. In addition, *H.* 

*decagrammus* were the most actively moving target species during dive surveys. A combination of these reasons may explain why their distributions are similar in reserves, non-reserves, and historically.

Accurate home range information is unknown for this species, although it is possible that *H. decagrammus* moves more than the size of these reserves (2-3km) and therefore the reserves confer a reduced refuge from fishing pressure. This would also explain the similarity of reserve and non-reserve distributions. However, the similarity of distributions from 2000 and the mid-1970's indicates that the more important process regulating this species' demographics is lack of fishing pressure rather than large home range and/or movement rates. In either case, the network of marine reserves is not playing any direct role in structuring *H. decagrammus* stocks in the area.

**Puget Sound rockfish** (*S. emphaeus*) are seldom caught by anglers because they feed on plankton and their mouths are too small for a typical bottomfishing hook. They also reproduce at around 2 years of age and reach a maximum size of 18cm (Beckman 1995). In this study, none greater than 16cm TL were sighted. Given the feeding habits of this species and the fishing habits of anglers, fishing is probably not structuring the demographics of this species. The greater abundance of *S. emphaeus* in non-reserves versus reserves is possibly due to increased predation of *S. emphaeus* inside reserves by the more abundant and significantly larger *O. elongatus*. Gut contents of *O. elongatus* collected in the study area revealed presence of *S. emphaeus* (W. Palsson, Washington

Department of Fish and Wildlife, personal communication), and transects with large numbers of *S. emphaeus* often also had *O. elongatus*. It would follow that the greater mean length of *S. emphaeus* inside reserves might be caused by an *O. elongatus* preference for smaller individuals.

The reserve network seems to play an indirect yet major role in regulating the density and mean size of *S. emphaeus* at the various sites, since reserves appear to regulate the demographics of *O. elongatus* at different sites. Human influences appear to be structuring ecosystems directly (in the case of *O. elongatus*) and indirectly (in the case of *S. emphaeus*). There could be other, unknown, indirect impacts on other species, for example killer whales (*Orcinus orca*), harbor seals (*Phoca vitulina*) and river otters (*Lutra canadiensis*).

*S. emphaeus* often behave somewhat similarly to subadult *S. flavidus* and *S. melanops*, schooling above certain features on rocky reefs and swimming into the current looking for prey. They also can behave like the epi-benthic *S. caurinus* and *S. maliger* inhabiting boulder piles, cracks and crevices. Adult *S. emphaeus* are also approximately the same size as subadult *S. flavidus* and *S. melanops*. The large increase in abundance over time of *S. emphaeus* may be facilitated by decreased abundance over time of subadult *S. flavidus* and *S. melanops* and a resultant increase in availability of space and/or prey resources. However, it is impossible to prove this without showing that prey or space is scarce.

Another potential explanation is that food and space are essentially unlimited and the population bottleneck for *S. flavidus* and *S. melanops* is supply of YOY. This appears to be the case for *S. melanops*. The situation for *S. flavidus* is unclear, and neither of these hypotheses explains why *S. emphaeus* has undergone a huge increase in abundance. The network appears to play an indirect role in regulating the density of *S. emphaeus* at the various sites.

**Black rockfish** (*S. melanops*) are prized by anglers and easily caught by bottomfishers and as bycatch by trollers targeting salmon. The lack of individuals <35cm compared to historical data by Moulton (1977) indicates a recruitment limited population in 2000. In the mid-1970's, *S. melanops* were common at the Turn Island non-reserve site as well as at the Point George reserve site (B. Miller, unpublished data), where they are not currently present. Overfishing (in the San Juan Channel or in outside waters) is likely to be the cause. Climate may be a factor as well, although data that support the claim are very limited. The network of marine reserves seems to be playing a major role in preserving *S. melanops* as a member of the San Juan Channel nearshore rocky reef assemblage, however the continued presence of this species is uncertain.

**Yellowtail rockfish** (*S. flavidus*) are a commonly taken rockfish. Occurring in schools off the bottom, this meso-pelagic species is characterized by extremely patchy distribution. They are prized by anglers and easily caught by bottomfishers and by trollers

targeting salmon. All eleven *S. flavidus* sighted in 2000 were in reserves. Larvae of *S. flavidus* are thought to drift up the Juan de Fuca Strait and settle in the San Juans. This would explain the presence of subadults without adults. In Puget Sound and the San Juan Islands, no adults have been recorded. Only subadult *S. flavidus* are seen in these inside waters (B. Miller, University of Washington, personal communication).

The lack of larger subadult *S. flavidus* compared to the mid-1970's could be the result of fishing pressure, especially in outside waters were the broodstock for *S. flavidus* in the San Juans is thought to reside (B. Miller, University of Washington, personal communication). However, *S. flavidus* trends in the San Juans could also be related to climate. Much larger reserves, with before and after reserve formation time series data from both inside and out of reserves, are needed to differentiate the relative importance of fishing pressure and climate in regulating temporal fluctuations in abundance (Carr and Reed 1993). The network of marine reserves seems to be playing a role in preserving the *S. flavidus* species as a member of the San Juan Channel assemblage, however the future demographic trend for this species is uncertain.

**Quillback rockfish (***S. maliger***)** are a commonly targeted bottomfish and are often bycatch of anglers targeting lingcod. *S. maliger* behaves similarly to *S. caurinus*, except that *S. maliger* generally inhabits greater depths. The disappearance of reproductive *S. maliger* from the assemblage since the 1970's is probably due to fishing removals and competition with the steadily increasing population of *S. caurinus* in the area (Moulton 1977; Caselle 1987; S. Miller, 1991 unpublished data; 1999 this study). Competition with *S. caurinus* could be forcing the lower depth limit of adult *S. maliger* deeper and out of conventional SCUBA working depths. However, lab and field experiments at Friday Harbor Laboratories have not revealed any evidence for competition between *S. caurinus* and *S. maliger*, (B. Miller, University of Washington, personal communication).

Working depth limitations limited the survey protocol to depths less than 20m. Moulton (1977) surveyed the same depth range as this study and half the *S. maliger* he saw were reproductive size. Reconnaissance dives to 30m completed during 2000 found the same abundance (zero) of reproductive *S. maliger* as sighted during all surveys in 2000. Fishing removals could be structuring the demographics of *S. maliger*, and the low fish density relative to the 1970's may be further exacerbated by possible competition with *S. caurinus*. The network of marine reserves is affecting demographics of *S. maliger* indirectly and in adverse ways.

Lingcod (*O. elongatus*) are commonly targeted by anglers and are one the most highly prized and sought after bottomfish in San Juan Channel. The low end of the legal size limit for *O. elongatus* is 26 inches (or 66.04 cm), the same size at which greater fish densities in reserves begin to appear. The distribution of *O. elongatus* in reserves is similar to that found in San Juan Channel during the mid-1970's, while the distribution in non-reserves is lacking larger individuals. This is strong evidence that removals by anglers fishing in non-reserve areas structure the demographic pattern of *O. elongatus* in San Juan Channel.

*O. elongatus* inhabiting nearshore rocky reefs seem to be predominantly males, while females reside in deeper water most of the year and enter shallower nearshore waters only briefly to spawn (T. Jagielo, Washington Department of Fish and Wildlife, personal communication). Egg nests have been sighted via SCUBA in the reserves, however most or all of the broodstock may not typically be within working SCUBA depths and are possibly out of the reserve boundaries altogether (except during spawning). Still, assuming larger males guard larger egg masses during the nesting season, larger males should have a disproportionately larger relation (on a per fish basis) with the reproductive potential of the population. In this study, *O. elongatus* were significantly larger in reserves. Therefore, the reserve areas could be contributing disproportionately more to the reproductive potential of the population than the amount of area contained in reserves would indicate.

Despite possible disproportionate contribution to *O. elongatus* reproductive potential from reserves compared to non-reserves, both reserves and non-reserves have similar densities of subadult recruits, i.e. densities of individuals less than 50cm were similar in reserves compared to non-reserves, in fact non-reserves appeared to have slightly more fish this size. YOY *O. elongatus* have been found initially in soft-bottom areas, for example bays and coves, and then disappearing from this habitat and beginning to appear in nearshore rocky reef habitat sometime before the end of their first year. Due to the rocky nature of the San Juan Channel study area, shallow soft bottom habitat is scarce. Therefore, it is quite likely that *O. elongatus* found on different rocky reefs (including site pairs in this study) initially recruited to the same areas of soft-bottom habitat. If reserves were contributing disproportionately more reproductive potential than a per area basis would indicate and we assume there is not homing in juveniles, it would follow that *O. elongatus* in reserves are augmenting recruitment in non-reserves since densities of subadults are similar in reserves and non-reserves and reserves seem to produce more recruits per area (m<sup>2</sup>). The network of marine reserves may be augmenting recruitment of subadult *O. elongatus* in the areas outside the reserves.

Striped surfperch (*E. lateralis*) are almost never caught in the San Juan Islands because they are not targeted. A related species, pile perch (*Damalichthys vacca*), inhabits pilings under docks and is commonly caught by anglers, especially younsters, targeting them. *E. lateralis* does not typically inhabit these piling areas. The lack of fishing pressure for *E. lateralis* explains similar length-frequency distributions in reserves and non-reserves. The network of marine reserves seems to have no direct effect on demographics of *E. lateralis* in the area.

**YOY** *S. caurinus / S. maliger* appear to be affected by factors other than reserve/non-reserve status and differences between site pairs. Possibilities include extreme nearshore (10's of meters-scale and within 10-20m from shore) bathymetry and resultant physical oceanography. YOY recruit distribution in the field appeared to correlate with tidal current eddies. Retention in tidal current eddies may be the mechanism driving patterns of YOY abundance.

In addition, mortality of YOY appeared higher in reserves, perhaps due to increased predation and/or cannibalism by more abundant and larger fishes, especially *S*. *caurinus* and *O. elongatus*, in reserve sites. In terms of marine reserve design, this argues for networks of many smaller reserves and avoiding establishment of reserves in zones of high YOY recruitment.

Three species of rockfish were sighted only in the three sites that exhibited large densities of YOY recruits. These three species were *S. maliger* (also note: all 23 *S. maliger* sighted were subadults), *S. flavidus* (also all subadults), and *S. melanops*. These three sites, which had high YOY recruitment and greater *Sebastes* species abundance, were one reserve site and two non-reserves. Recruitment may be structuring species diversity patterns for the *Sebastes* genus in San Juan Channel.

### Marine mammal predation inside reserves

One criticism of reserves is the belief some people have that marine mammals will simply consume any increases in fish stocks inside the reserve, effectively canceling out any increases. Marine mammals sighted during two years of 12 months-a-year on the water in San Juan Channel include: numerous harbor seals (*Phoca vitulina*), an occasional group of river otters (*Lutra canadensis*), one pod of orca whales (*Orcinus orca*), a minke whale (*Balaenoptera acutorostrata*) twice, and a very occasional Dall's porpoise (*Phocoenoides dalli*) and harbor porpoise (*Phocoena phocoena*). Of these, only three seem capable of predation of the target species in this study, namely *P. vitulina*, *L. canadiensis* and *O. orca*.

*P. vitulina* were often seen foraging in waters just offshore from the Shady Cove reserve study site and a haulout exists inside the Yellow Island reserve study site. However, fecal samples (scats) collected in Hood Canal from *P. vitulina* haulouts showed the three most important prey species being Pacific hake (*Merliccius productus*), Pacific herring (*Clupea pallasi*), and salmon (*Salmonidae*); followed by shiner perch (*Cymatogaster aggregata*), market squid (*Loligo opalescens*), Pacific staghorn sculpin (*Leptocottus armatus*), Northern anchovy (*Engraulis mordax*), and plainfin midshipman (*Porichthys notatus*), and not any of the target species in this study (Lance *et al.* 2001). While the San Juan Islands have much more rocky reef habitat than Hood Canal, herring and salmon (2 of the 3 most common prey in the Hood Canal study) are very abundant in the San Juans.

*L. canadensis* are uncommon, but they have been observed to feed on copper rockfish (*S. caurinus*) (B. Miller, University of Washington, personal communication). This feeding behavior is probably uncommon since *L. canadensis* scat is composed of primarily crab shell.

As for *O. orca*, they are the second most dominant predator in the entire ecosystem, second only to humans (*Homo sapiens*). Rockfish (*Sebastes* spp.) bones have been found in the stomachs of necropsied *O. orca*, however these top predators appear to prefer salmonids (K. Balcomb, Center for Whale Research, personal communication).

### **SUMMARY**

I have divided the eight species of interest in this study into five scenarios based on whether they are increasing or decreasing in density over time, whether they are fished, and whether they are prey.

First, three species are fished and increased in density, *S. caurinus, H. decagrammus* and *O. elongatus*. Before reserves, *S. caurinus* and *H. decagrammus* were increasing in abundance and *O. elongatus* were declining. After reserves were implemented, all three increased. These species show direct reserve effects. Species doing well before reserves can do even better after reserves, and reserves can help declining species recover.

Three species are fished and decreased in density, *S. melanops, S. flavidus* and *S. maliger*. Before reserves, all three were declining in density. After reserves, *S. melanops* have maintained a presence at the Shady Cove reserve and young *S. flavidus* and *S. maliger* are present. *S. melanops* are not recruiting and *S. flavidus* and *S. maliger* have recently begun recruiting. Why has recruitment of *S. flavidus* and *S. maliger* recurred in the last few years? Perhaps a favorable climate regime improved recruitment. In the future, the combination of increased recruitment and positive reserve effects may help these species recover.

One species was increasing but not fished, *S. emphaeus*. Before reserves, *S. emphaeus* increased. After reserves, continued to increase, but less so where large *O. elongatus* were abundant (this trend was particularly evident at the Shady / Turn pair). Why has the increase been less were large *O. elongatus* are more abundant? The reserve effect is indirect. Reserves appear to increase the densities of predators of small rockfish, in this case *O. elongatus*.

*E. lateralis* are not fished and not prey. Before reserves, there was insufficient data to determine trends, but after reserves, no difference was evident between reserves and non-reserves. There does not appear to be any reserve effect, direct or indirect, for this species.

YOY *S. caurinus / S. maliger* are not fished but are prey. These fishes were larger and more abundant in non-reserves. These fish appear to be affected indirectly by reserves. They are the prey of large *S. caurinus* and *O. elongatus*, which are more abundant and larger in reserves (Table 50).

In conclusion, reserves have a positive, direct effect on increasing, fished populations, such as *S. caurinus, H. decagrammus* and *O. elongatus*. These direct effects appear to intensify for species subject to greater fishing pressure. For example, the reserve effect on *O. elongatus* seemed greater than the reserve effect on *S. caurinus*, which was greater than the reserve effect on *H. decagrammus*. Reserves have no direct

| Species                         | Trend over time?              | Fished?                    | Prey?         |
|---------------------------------|-------------------------------|----------------------------|---------------|
| S. caurinus                     | Increasing population density | Yes                        | Perhaps minor |
| H. decagrammus                  | Increasing population density | Somewhat                   | ?             |
| S. emphaeus                     | Increasing population density | Not yet                    | Yes           |
| S. melanops                     | Decreasing population density | Yes                        | ?             |
| S. flavidus                     | Decreasing population density | Yes, and also for probable | ?             |
| S. maliger                      | Decreasing population density | Yes                        | ?             |
| O. elongatus                    | Recovering population density | Yes                        | ?             |
| E. lateralis                    | ?                             | Not in study area          | ?             |
| YOY S. caurinus<br>/ S. maliger | ?                             | No                         | Yes           |

Table 50. Factors that may determine the effect of the San Juan Islands Marine Preserves on each species of interest.

effect on unfished populations, such as *E. lateralis*. Reserves have no direct effect on decreasing, fished populations such as *S. melanops, S. flavidus* and *S. maliger*, although these species may be maintained by reserves with high substrate complexity (e.g. Shady Cove reserve). Alternative management measures appear necessary to recover these species. Reserves can have negative, indirect effects on increasing populations, such as *S. emphaeus*, if reserves increase the density of predators, such as *O. elongatus*. This negative, indirect effect is also apparent for YOY *S. caurinus / S. maliger*.

The Point George time-series study allows for examination of trends leading up to reserve implementation, and these results predict which species are most helped by reserves. The 2000 spatial study improves on previous studies with greater statistical power, more species of interest, greater similarity among pairs and uniform age of reserves.

We must be aware of specific local conditions. For example, decreasing species were more successful at the Shady reserve site, perhaps due to favorable habitat. We must also be aware of predator / prey interactions. *S. emphaeus* were very abundant at Turn but not at Shady were large *O. elongatus* were abundant. Also, YOY *S. caurinus / S. maliger* and age 1+ *S. maliger* were more abundant and larger in non-reserves.

The results of this work show that marine reserves can be an important fisheries management tool for nearshore rocky reef fish in temperate regions. However, more traditional fisheries management measures appear to be important components of any viable management scheme. Reserves for temperate nearshore rocky reef should not be expected to show results as quickly as reserves in tropical regions because of the generally slow growing and long lived nature of fish in temperate regions.

## **FUTURE RESEARCH**

Future research needs to address gaps in our knowledge of the life history and ecology of these fish in order to design sound management practices. For example, very little is known about where most rockfish (*Sebastes* species) release their larvae. Some evidence points to migrations away from home sites for parturition. We need to know whether they leave their home site reef. If they do leave their home site reef and go outside reserves, we need to know where they go, at what time of year they go and for how long. Perhaps fishing seasons could be put in place around this activity.

In addition, we need time series data from multiple pairs of reserve and nonreserve sites. We need spatially explicit quantification of fishing effort to better determine fishing mortality. We need to answer the question: "are anglers altering their behavior because of reserves?" perhaps through social science techniques. The effects of climate regimes on each species, especially concerning population growth and recruitment, need to be determined. The food habits of local marine mammals need to be determined. Finally, detailed data on fish movement are needed, including home range sizes of individuals and populations. This information will aid in effective design of marine reserves.

### LITERATURE CITED

- Alcala, A.C. and G.R. Russ. 1990. A direct test of the effects of protective management on abundance and yield of tropical marine reserves. *J. Cons. Int. Explor. Mer* **46**: 40-47.
- Ballantine, W.J. 1994. Networks of "no-take" marine reserves are practical and necessary. Pages 13-20 in N.L. Shackell and J.H.M. Williamson, eds. Marine protected areas and sustainable fisheries. Science and Management of Protected Areas Association, Wolfville, Nova Scotia.
- Beckman, A.J. 1995. Recruitment Ecology and Reproductive Biology of the Puget SoundRockfish, *Sebastes emphaeus* (Starks 1911). M.S. Thesis, University of Washington, Seattle.
- Bloeser, J. 1999. Diminishing Returns: The Status of West Coast Rockfish. Pacific Marine Conservation Council. Astoria, Oregon.
- Bohnsack, J.A. 1996. Marine reserves, zoning, and the future of fishery management. *Fisheries* **21(9)**: 14-16.
- Carr, M.H. and D.C. Reed. 1993. Conceptual issues relevant to marine harvest refuges: Examples from temperate reef fishes. *Can. J. Fish. Aquat. Sci.* **50:** 2019-2028
- Caselle, J.E. 1987. A reassessment of the Ecology of Fishes in the Rocky Nearshore Habitat of Pt. George, Shaw Island, Wa. Friday Harbor Laboratories Course Papers, Fish Biology 565B.
- Chasco, B., L. Weis and D. Cooper. 2000. The Distribution and Densities of Larval Marine Protected Area Fishes in San Juan Channel. Friday Harbor Laboratories Course Papers, Marine Fish Ecology, Fish 499.
- DeLacy, A.C., C.R. Hitz and R.L. Dryfoos. 1964. Maturation, gestation, and birth of rockfish (Sebastodes) from Washington and adjacent waters. Washington Department of Fisheries, Fisheries Research Papers 2:51-67.
- Executive Order on Marine Protected Areas: Federal Register. 2000. Presidential Documents. Executive Order 13158. Volume 65, No. 105. May 31, 2000. Washington, D.C.

- Eisenhardt, E. 2001. A marine preserve network in San Juan Channel: is it working for nearshore rocky reef fish? *Proceedings of the 2001 Puget Sound Research Conference*. PSWQAT, Olympia, Washington.
- Jagielo, T.H. 1994. Assessment of lingcod (*Ophiodon elongatus*) in the area north of 45°46'N (Cape Falcon) and south of 49°00'N in 1994. Appendix I. *In:* Status of the Pacific coast groundfish fishery through 1994 and recommended acceptable biological catches for 1995, 76 p. Pacific Fishery Management Council, Portland, Oregon.
- Karpov, K.A., D.P. Albin, W.H. Van-Buskirk. 1995. The marine recreational fishery in northern and central California: a historical comparison (1958-86), status of stock (1980-86), and effects of changes in the California current. Cal. Dept. Fish Game Report, pp.1-3.
- Martell, S. and S. S. Wallace. 2000. The use of marine protected areas for the conservation of lingcod. *Bull. Mar. Sci.* 66 (3): 957-990.
- McCormick, M.I. and J.H. Choat. 1987. Estimating total abundance of a large temperate-reef fish using visual strip-transects. *Mar. Bio.* **96:** 469-478.
- Miller, S. 1992. Unpublished data.
- Moulton, L.L. 1977. An ecological analysis of fishes inhabiting the rocky nearshore regions of northern Puget Sound, Washington. Ph.D. Dissertation, University of Washington Seattle. 181p.
- Murray, M. 1998. The Status of Marine Protected Areas in Puget Sound. Puget/Sound/Georgia Basin Environmental Report Series: Number 8. 2 Vols.
- Paddack, M.J. 1996. The influence of marine reserves upon rockfish populations in central California kelp forests. M.S. Thesis. University of California, Santa Cruz. 40 p.
- Paddack, M.J. and J.A. Estes. 2000. Kelp forest fish populations in marine reserves and adjacent exploited areas of central California. *Ecological Applications* **10(3)**: 855-870.

- Palsson, W.A. 1998. Monitoring the response of rockfishes to protected areas. Pages 64-73 *in*M.M. Yoklavich, ed. Marine harvest refugia for West Coast rockfish: A workshop. NOAA-TM-NMFS-SWFC-255, La Jolla, CA.
- Palsson, W.A. and R.E. Pacunski. 1995. The response of rocky reef fishes to harvest refugia in Puget Sound. *In* Puget Sound Research '95, Vol. 1, pages 224-234. Puget Sound Water Quality Authority, Olympia, Washington.
- Palsson, W.A., J.C. Hoeman, G.G. Bargmann, D.E. Day. 1997. 1995 Status of Puget SoundBottomfish Stocks (revised). Wash. Dept. Fish and Wildlife Report MRD97-03, 98 p.
- Parker, S.J., S.A. Berkeley, J.T. Golden, D.R. Gunderson, J. Heifetz, M.A. Hixon, R. Larson,
  B.M.Leaman, M.S. Love, J.A. Musick, V.M. O'Connell, S. Ralston, H.J. Weeks, and M.M.
  Yoklavich. 2000. Management of Pacific Rockfish. *Fisheries*. 25(3): 22-30.

Pentcheff, D. 2000. Tide Current Predictor software.

- Richards, L.J. and A.J. Cass. 1986. The British Columbia inshore rockfish fishery: Stock assessment and fleet dynamics of an unrestricted fishery. *In*: Proceedings of the International Rockfish Symposium, Lowell Wakefield Fisheries Symposium, Anchorage, Alaska, USA, October 20-22, 1986. Alaska Sea Grant Report, No. 87-2, p 299-308.
- Roberts, C.M. and N.V.C. Polunin. 1991. Are marine reserves effective in management of reef fisheries? *Rev. Fish Bio. Fish.* 1: 65-91.
- Rothrock, G.C. 1973. Age-length, weight, fecundity, and meristics of the kelp greenling (*Hexagrammos decagrammus*) off California. M.S. Thesis, University of California, Davis.
  95 p.
- Russ, G. and A. Alcala. 1996. "Do marine reserves export adult fish biomass? evidence from Apo Island, Central Philippines." *Marine Ecology Progress Series* 132:1-9.
- Soh, S. K., D. R. Gunderson, and D. H. Ito. 1998. Closed areas to manage rockfishes in the Gulf of Alaska. Pp.118-124 in M. M. Yoklavich (ed.), *Marine harvest refugia for West Coast*
Rockfish: A Workshop. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-225.

U.S. Department of Commerce, Pacific Grove, California.

- Taggart, J.V., F.R. Wallace, and J.N. Ianelli. 2000. Status of Yellowtail Rockfish Resource in 2000. Pacific Fishery Management Council, Portland, Oregon. 118p.
- Wallace, F.R. and J.V. Taggart. 1994. Status of the coastal black rockfish stocks in Washington and northern Oregon in 1994. *In*: Status of the Pacific coast groundfish fishery through 1994 and recommended acceptable biological catches for 1995, Appendix F. Pacific Fishery Management Council, Portland, Oregon. 57 p.
- Washington, P.M., R. Gowan, and D.H. Ito. 1978. A biological report on eight species of rockfish (Sebastes spp.) from Puget Sound, Washington. NOAA/NMFS, Northwest and Alaska Fisheries Center Processed Report, Reprint F, 50 p.

| Time 1           | George R          | Neck NR           | Shady R            | Turn NR            | Yellow R         | Jones NR          |           |           |
|------------------|-------------------|-------------------|--------------------|--------------------|------------------|-------------------|-----------|-----------|
| SPECIES          | fish/ha sd        | fish/ha sd        | fish/ha sd         | fish/ha sd         | fish/ha sd       | fish/ha sd        | F-ratio F | •         |
| O. elongatus     | 60 <u>+</u> 97    | 80 <u>+</u> 103   | 80 <u>+</u> 140    | 160 <u>+</u> 246   | 80 <u>+</u> 140  | 60 <u>+</u> 97    | 0.497     | 0.484     |
| S. caurinus      | $840 \pm 878$     | 220 <u>+</u> 239  | 520 <u>+</u> 424   | $320 \pm 215$      | 220 <u>+</u> 239 | $100 \pm 141$     | 7.806     | 0.007 *** |
| S. melanops      | $0\pm 0$          | $0\pm 0$          | 100 <u>+</u> 194   | $0\pm 0$           | $0\pm 0$         | $0\pm 0$          | 2.647     | 0.110     |
| S. flavidus      | $0\pm 0$          | $0\pm 0$          | $0\pm 0$           | $0\pm 0$           | $0\pm 0$         | $0\pm 0$          |           |           |
| S. emphaeus      | 2180 <u>+</u> 443 | 5640 <u>+</u> 802 | 1440 <u>+</u> 2195 | 5580 <u>+</u> 8524 | 720 <u>+</u> 158 | 960 <u>+</u> 2195 | 3.639     | 0.062 *   |
|                  | 5                 | 7                 |                    |                    | 9                |                   |           |           |
| H. decagrammus   | 360 <u>+</u> 263  | 80 <u>+</u> 103   | 200 <u>+</u> 211   | 140 <u>+</u> 165   | 60 <u>+</u> 190  | 60 <u>+</u> 135   | 5.618     | 0.021 **  |
| E. lateralis     | 40 <u>+</u> 126   | $0\pm 0$          | $0 \pm 0$          | $0\pm 0$           | $0\pm 0$         | 60 <u>+</u> 190   | 0.077     | 0.783     |
| S. maliger       | $0\pm 0$          | $0\pm 0$          | $0\pm 0$           | $0\pm 0$           | $0\pm 0$         | $0\pm 0$          |           |           |
| YOY S. caurinus/ | 20 <u>+</u> 63    | 160 <u>+</u> 506  | 1140 <u>+</u> 2407 | $0\pm 0$           | $0\pm 0$         | 160 <u>+</u> 506  | 1.118     | 0.295     |
| maliger          |                   |                   |                    |                    |                  |                   |           |           |

F-ratios and P values from 3 x 2 ANOVA (site pairs x reserve/non-reserve treatment) \*\*\* P<0.01, \*\* P<0.05, \* P<0.1

| Time 3         | G  | eorge R            | Neck NR            | Shady R            | Turn NR              | Yellow R           | Jones NR         |               |
|----------------|----|--------------------|--------------------|--------------------|----------------------|--------------------|------------------|---------------|
| SPECIES        | fi | sh/ha sd           | fish/ha sd         | fish/ha sd         | fish/ha sd           | fish/ha sd         | fish/ha sd       | F-ratio P     |
| O. elongatus   | *  | $40 \pm 84$        | 40 <u>+</u> 84     | 280 <u>+</u> 316   | 120 <u>+</u> 169     | 120 <u>+</u> 215   | $40 \pm 84$      | 2.945 0.092 * |
| S. caurinus    |    | $500 \pm 552$      | 320 <u>+</u> 444   | $480 \pm 583$      | $340 \pm 341$        | $220 \pm 382$      | 360 <u>+</u> 515 | 0.237 0.629   |
| S. melanops    |    | $0\pm 0$           | $0\pm 0$           | $20 \pm 63$        | $0\pm 0$             | $0\pm 0$           | $0\pm 0$         | 1.000 0.322   |
| S. flavidus    |    | $0\pm 0$           | $0\pm 0$           | $0\pm 0$           | $0\pm 0$             | $0\pm 0$           | $0\pm 0$         |               |
| S. emphaeus    |    | 4940 <u>+</u> 9905 | 1560 <u>+</u> 4726 | 3560 <u>+</u> 5727 | 19240 <u>+</u> 20785 | 1420 <u>+</u> 4217 | 200 <u>+</u> 632 | 2.034 0.160   |
| H. decagrammus | *  | $360 \pm 207$      | 180 <u>+</u> 239   | $240 \pm 263$      | 200 <u>+</u> 163     | $140 \pm 165$      | 60 <u>+</u> 97   | 3.872 0.054 * |
| E. lateralis   |    | $40 \pm 84$        | $0\pm 0$           | $0\pm 0$           | $0\pm 0$             | $0\pm 0$           | 20 <u>+</u> 63   | 0.360 0.551   |
| S. maliger     |    | $0\pm 0$           | 140 <u>+</u> 267   | 40 <u>+</u> 126    | $0\pm 0$             | $0\pm 0$           | $40 \pm 84$      | 2.070 0.156   |
| YOY <i>S</i> . |    | $0\pm 0$           | $1100 \pm 2632$    | $0\pm 0$           | $0\pm 0$             | $0\pm 0$           | $0\pm 0$         | 1.747 0.192   |
| caurinus/      |    |                    |                    |                    |                      |                    |                  |               |
| maliger        |    |                    |                    |                    |                      |                    |                  |               |

F-ratios and P values from 3 x 2 ANOVA (site pairs x reserve/non-reserve treatment) \*\*\* P<0.01, \*\* P<0.05, \* P<0.1

167

167

AR007957

| Time 4         | G   | eorge R          | Neck NR            | Shady R            | Turn NR             | Yellow R          | Jones NR         |           |         |
|----------------|-----|------------------|--------------------|--------------------|---------------------|-------------------|------------------|-----------|---------|
| SPECIES        | fis | sh/ha sd         | fish/ha sd         | fish/ha sd         | fish/ha sd          | fish/ha sd        | fish/ha sd       | F-ratio 1 | Р       |
| O. elongatus   |     | 60 <u>+</u> 84   | 10 <u>+</u> 32     | $110 \pm 110$      | $100 \pm 82$        | 70 <u>+</u> 125   | 20 <u>+</u> 42   | 2.751     | 0.103   |
| S. caurinus    | *   | $450 \pm 550$    | 190 <u>+</u> 273   | $510 \pm 526$      | $310 \pm 242$       | $180 \pm 244$     | 120 <u>+</u> 155 | 3.316     | 0.074 * |
| S. melanops    |     | $0\pm 0$         | $0\pm 0$           | $0\pm 0$           | $0\pm 0$            | $0 \pm 0$         | $0\pm 0$         |           |         |
| S. flavidus    |     | $0\pm 0$         | $0\pm 0$           | $30 \pm 95$        | $0\pm 0$            | $0\pm 0$          | $0\pm 0$         | 0.636     | 0.429   |
| S. emphaeus    | *   | 420 <u>+</u> 702 | 1890 <u>+</u> 5977 | 1840 <u>+</u> 2258 | 6150 <u>+</u> 14221 | 590 <u>+</u> 1443 | $300 \pm 675$    | 3.524     | 0.066 * |
| H. decagrammus |     | $200 \pm 141$    | 100 <u>+</u> 94    | $120 \pm 92$       | $70 \pm 95$         | $120 \pm 114$     | $60 \pm 70$      | 1.121     | 0.294   |
| E. lateralis   |     | $0\pm 0$         | $0\pm 0$           | $30 \pm 95$        | $0\pm 0$            | $10 \pm 32$       | 10 <u>+</u> 32   | 0.640     | 0.427   |
| S. maliger     |     | $0\pm 0$         | 10 <u>+</u> 32     | $20 \pm 63$        | $0\pm 0$            | $0 \pm 0$         | $0\pm 0$         | 0.192     | 0.663   |
| YOY <i>S</i> . |     | $0\pm 0$         | 10 <u>+</u> 32     | $10 \pm 32$        | $0\pm 0$            | $0\pm 0$          | $0\pm 0$         | 0.017     | 0.898   |
| caurinus/      |     |                  |                    |                    |                     |                   |                  |           |         |
| maliger        |     |                  |                    |                    |                     |                   |                  |           |         |

F-ratios and P values from 3 x 2 ANOVA (site pairs x reserve/non-reserve treatment) \*\*\* P<0.01, \*\* P<0.05, \* P<0.1

| Legs 1-3       | George R           | Neck NR            | Shady R            | Turn NR          | Yellow R           | Jones NR          |                  |
|----------------|--------------------|--------------------|--------------------|------------------|--------------------|-------------------|------------------|
| SPECIES        | fish/ha sd         | fish/ha sd         | fish/ha sd         | fish/ha sd       | fish/ha sd         | fish/ha sd        | F-ratio P        |
| O. elongatus   | $108 \pm 100$      | 58 <u>+</u> 90     | 217 <u>+</u> 180   | 283 <u>+</u> 185 | 142 <u>+</u> 168   | 58 <u>+</u> 90    | 0.118 0.733      |
| S. caurinus    | $750 \pm 616$      | $383 \pm 406$      | 850 <u>+</u> 342   | $383 \pm 244$    | 425 <u>+</u> 328   | $258 \pm 300$     | 11.982 0.001 *** |
| S. melanops    | $0\pm 0$           | $0 \pm 0$          | 108 <u>+</u> 198   | $0\pm 0$         | $0\pm 0$           | $0\pm 0$          | 3.556 0.064 *    |
| S. flavidus    | $0\pm 0$           | $0\pm 0$           | 67 <u>+</u> 231    | $0\pm 0$         | $0\pm 0$           | $0\pm 0$          | 0.985 0.325      |
| S. emphaeus    | 8133 <u>+</u> 9772 | 7042 <u>+</u> 8861 | 4808 <u>+</u> 4814 | 21658 ± 19367    | 2558 <u>+</u> 3797 | 750 <u>+</u> 2050 | 5.601 0.021 **   |
| H. decagrammus | $367 \pm 161$      | $258 \pm 188$      | 250 <u>+</u> 265   | $158 \pm 131$    | 183 <u>+</u> 170   | 133 <u>+</u> 130  | 3.369 0.071 *    |
| E. lateralis   | $0\pm 0$           | $0\pm 0$           | $0\pm 0$           | $0\pm 0$         | $0\pm 0$           | $0\pm 0$          |                  |
| S. maliger     | $0\pm 0$           | 125 <u>+</u> 245   | 33 <u>+</u> 115    | $0\pm 0$         | $0\pm 0$           | 83 <u>+</u> 233   | 2.645 0.109      |
| YOY S.         | $17 \pm 58$        | $0\pm 0$           | $0\pm 0$           | $0\pm 0$         | $0\pm 0$           | $0\pm 0$          | 0.985 0.325      |
| caurinus/      |                    |                    |                    |                  |                    |                   |                  |
| maliger        |                    |                    |                    |                  |                    |                   |                  |

F-ratios and P values from 3 x 2 ANOVA (site pairs x reserve/non-reserve treatment) \*\*\* P<0.01, \*\* P<0.05, \* P<0.1

| Legs 4-6       |     | George R         | Neck NR           | Shady R            | Turn NR            | Yellow R         | Jones NR         |                 |
|----------------|-----|------------------|-------------------|--------------------|--------------------|------------------|------------------|-----------------|
| SPECIES        |     | fish/ha sd       | fish/ha sd        | fish/ha sd         | fish/ha sd         | fish/ha sd       | fish/ha sd       | F-ratio P       |
| O. elongatus   | *   | 75 <u>+</u> 97   | 17 <u>+</u> 58    | 200 <u>+</u> 270   | 100 <u>+</u> 95    | 92 <u>+</u> 178  | 58 <u>+</u> 79   | 3.898 0.053 *   |
| S. caurinus    | *** | 950 <u>+</u> 735 | $208 \pm 235$     | 733 <u>+</u> 446   | $450 \pm 235$      | 117 <u>+</u> 175 | 367 <u>+</u> 438 | 7.524 0.008 *** |
| S. melanops    |     | $0\pm 0$         | $0\pm 0$          | 17 <u>+</u> 58     | $0\pm 0$           | $0\pm 0$         | $0\pm 0$         | 0.972 0.328     |
| S. flavidus    |     | $0\pm 0$         | $0\pm 0$          | 25 <u>+</u> 87     | $0\pm 0$           | $0\pm 0$         | $0\pm 0$         | 0.972 0.328     |
| S. emphaeus    | **  | 300 <u>+</u> 588 | 600 <u>+</u> 1274 | 2042 <u>+</u> 2875 | 7783 <u>+</u> 9374 | $0\pm 0$         | 717 <u>+</u> 754 | 6.453 0.013 **  |
| H. decagrammus | *** | 442 <u>+</u> 223 | 142 <u>+</u> 168  | 175 <u>+</u> 114   | 175 <u>+</u> 142   | 117 <u>+</u> 164 | 67 <u>+</u> 107  | 8.254 0.005 *** |
| E. lateralis   |     | 17 <u>+</u> 58   | $0\pm 0$          | $0\pm 0$           | $0\pm 0$           | $0\pm 0$         | 8 <u>+</u> 29    | 0.302 0.584     |
| S. maliger     |     | $0\pm 0$         | $0\pm 0$          | 25 <u>+</u> 62     | $0\pm 0$           | $0\pm 0$         | 17 <u>+</u> 58   | 0.251 0.618     |
| YOY <i>S</i> . |     | $0\pm 0$         | $700 \pm 2425$    | $0\pm 0$           | $0\pm 0$           | $0\pm 0$         | 17 <u>+</u> 58   | 1.829 0.181     |
| caurinus/      |     |                  |                   |                    |                    |                  |                  |                 |
| maliger        |     |                  |                   |                    |                    |                  |                  |                 |

F-ratios and P values from 3 x 2 ANOVA (site pairs x reserve/non-reserve treatment) \*\*\* P<0.01, \*\* P<0.05, \* P<0.1

| Legs 10-12     |    | George R       | Neck NR        | Shady R           | Turn NR       | Yellow R       | Jones NR         |                |
|----------------|----|----------------|----------------|-------------------|---------------|----------------|------------------|----------------|
| SPECIES        |    | fish/ha sd     | fish/ha sd     | fish/ha sd        | fish/ha sd    | fish/ha sd     | fish/ha sd       | F-ratio P      |
| O. elongatus   |    | 17 <u>+</u> 58 | 33 <u>+</u> 78 | 8 <u>+</u> 29     | 8 <u>+</u> 29 | $0\pm 0$       | $0 \pm 0$        | 0.665 0.418    |
| S. caurinus    | ** | $17 \pm 58$    | $17 \pm 58$    | $25 \pm 62$       | $100 \pm 128$ | $0\pm 0$       | $0\pm 0$         | 4.383 0.040 ** |
| S. melanops    |    | $0\pm 0$       | $0\pm 0$       | $0\pm 0$          | $0\pm 0$      | $0\pm 0$       | $0 \pm 0$        |                |
| S. flavidus    |    | $0\pm 0$       | $0\pm 0$       | $0\pm 0$          | $0\pm 0$      | $0\pm 0$       | $0\pm 0$         |                |
| S. emphaeus    |    | $0\pm 0$       | $0\pm 0$       | $0\pm 0$          | $0\pm 0$      | $0\pm 0$       | $0 \pm 0$        |                |
| H. decagrammus |    | $167 \pm 235$  | $17 \pm 58$    | 83 <u>+</u> 127   | $92 \pm 131$  | 25 <u>+</u> 45 | 8 <u>+</u> 29    | 2.447 0.123    |
| E. lateralis   | *  | $100 \pm 200$  | $0 \pm 0$      | 83 <u>+</u> 127   | 8 <u>+</u> 29 | 25 <u>+</u> 62 | 67 <u>+</u> 178  | 3.061 0.085 *  |
| S. maliger     |    | $0\pm 0$       | $0\pm 0$       | $0\pm 0$          | $0\pm 0$      | $0\pm 0$       | $0 \pm 0$        |                |
| YOY <i>S</i> . |    | $17 \pm 58$    | $100 \pm 249$  | 967 <u>+</u> 2215 | $0\pm 0$      | $0\pm 0$       | 133 <u>+</u> 462 | 1.270 0.264    |
| caurinus/      |    |                |                |                   |               |                |                  |                |
| maliger        |    |                |                |                   |               |                |                  |                |

F-ratios and P values from 3 x 2 ANOVA (site pairs x reserve/non-reserve treatment) \*\*\* P<0.01, \*\* P<0.05, \* P<0.1