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Background


This markdown file presents a set of relatively simple power analysis for logistic regression models used to

link external covariates with SRKW fecundity or survival. Using fecundity as an example, the general form

of these models is


logit(Pr(birth)) = B0 + B1 ∗ X + B2 ∗ age + B3 ∗ age
2


where B0 is the intercept, X is an optional covariate (such as prey) linked to birth rates through the parameter

B1 , and B2 and B3 are optional covariates to account for a quadratic age effect. We assume that X is

z-transformed, i.e. standardized to have mean 0 and standard deviation of 1. Note that the true functional

form of the relationship is likely different, measurements are uncertain (detection of births is due in part to

the whales’ presence in inland waters, which is variable by pod and year), and other unmeasured covariates

have effects as well. These complications are not accounted for in these power analyses.


Following off work by the 2011-2012 bilateral science panel, much of the recent regression work has asked to

what degree external perturbations to covariates affecting prey (hatchery production, fishing closures) might

affect vital rates. This document attempts to link the magnitude of these effects (% increases over status

quo) to the idea of statistical power, or the probability of detecting a change when it exists. We present

simulations based around the question: What is the power to detect effects of interventions whose effects

are not mediated through directly observed covariates, through a before-after comparison? We also offer

some qualitative guidance about what this means with respect to our ability to detect effects of measured

covariates, but a full power analysis of this question turns out to be very computationally expensive, and

very sensitive to assumptions and modeling choices.


Simulations


Simulation overview


To simulate before/after analysis of some intervention, we performed simulations, using fecundity of SRKWs

as the response variable. For this first set of simulations, prey was not included as a covariate (i.e., there was

no X and no B1 term). These simulations were done as follows:


1. First, we fit several alternative models to the entire SRKW dataset. These models largely follow from

those published previously, including quadratic effects of age for fecundity and stages for survival

(Hilborn et al. 2012, Ward et al. 2013, PFMC 2020). We fit a simple logistic regression model (GLM,

binomial family, logit link) without time varying effects, and a second generalized additive model (GAM,

binomial family, logit link) with a smooth term estimated over the year effects. The smooth term can

be thought of as the collection of drivers affecting fecundity or that are unrelated to age or sex and not

directly measured (noise, toxins, disease, etc., also prey if it is not modeled as a covariate).


2. Given these model fits, we performed simulations that generated new datasets based on the estimated

model parameters, but varying the intercept parameter of each model, in logit space, for the second

half of the simulated time series (after the year 2000). In the absence of covariates, the intercept in

logistic regression models of SRKW fecundity can be viewed as the mean birth rate (on the logit scale).

We varied each intercept from 0.00 to 1, in steps of 0.01. For each proposed intercept, we simulated

1000 new datasets from the model fit to the data in Step 1. Each dataset was simulated to have the
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same intervention, in the middle of the time series (for these simulated data, data after the year 2000

were generated the new intercept, while data before 2000 were generated using the original intercept).


3. For each of the 1000 simulated datasets, we re-fit GLMs and GAMs, as in Step 1, but for each included

the effect of an indicator variable (0 before the year 2000, 1 after). As a last binary fork in the simulation,

we simulated datasets to either have parameters shared across individuals and time steps, or random

parameters for each individual and time step.


4. We calculated statistical power in Step 3 as the proportion of simulated datasets where the effect of the

indicator was “statistically significant” (in the typical sense of p <= 0.05).


With two modeling approaches (GLMs with constant rates through time, GAMs with time varying rates)

and two assumptions about parameter variability (constant, random by individual-year), this approach

will produce four power curves. We expect that simpler models (time-invariant GLMs) and less parameter

variability (constant values shared across individuals and years) will yield higher power for a given effect.


Interpreting results


Though our simulations included a range of effect sizes (i.e., multipliers applied to the base fecundity rate

– such that an effect size of 1.0 means no effect), we truncated the upper limit of these to be 1.3. This

number was chosen because an increase in fecundity rates of 30% would result in fecundity rates comparable

to Northern Resident killer whales (Ward et al. 2013, Ward et al. 2009), which is presumably close to the

biological maximum for the species.


First, we can plot the effect sizes versus statistical power for each combination of model and parameter

uncertainty (Figure 1). Statistical power here is defined as the probability of detecting a statistically significant

effect (p <= 0.05). This plot illustrates two important concepts. First, simpler models without time-varying

parameters (GLMs) can produce higher power than those that have time-varying fecundity rates (GAMs).

Second, when simulated datasets are generated based on constant parameters across individuals and time

(sampling = “constant”) the power is higher than with full (and more realistic) variability (sampling =

“random”). Combined, these results confirm our hypothesis that simpler models will yield higher statistical

power. The simple models used in this simulation (GLMs or GAMs with constant parameters) should be

seen as oversimplifications, both in assumptions made about time-varying trends, and propagating parameter

uncertainty.


An important result from this plot is that for most cases, statistical power is low - even for the largest effect

sizes. For example, when parameters are held constant in simulating new datasets, the GAM model’s highest

power is 0.722. When parameter uncertainty is not held constant, power is 0.368 and 0.126 for the temporally

constant GLM and time-varying GAM, respectively. Effect sizes smaller than about 1.1 are unlikely to be

detected even under the most optimistic modeling assumptions. Designed experiments often target a power

of at least 80%, which can only be achieved for these models under the most optimistic modeling assumptions

and for fairly strong effects.


Note also that for an effect size of 1.0 (i.e., no effect) the power reflects the probability of a false positive,

which should be close to the target p-value of 0.05. If the critical p-value is raised to 0.10, power goes up, but

so does the risk of a false positive (Figure 2).


Interpreting effect sizes


One obvious question that arises from these simulations is how they relate to proposed adjustments to

prey levels (separate from the question of estimating the effect of known changes in prey abundance, which

we address later). We first ask, in the absence of measures of prey abundance, but assuming a logit-scale

relationship between prey abundance and SRKW demography, how much power do we have to detect the

demographic response to an increase in mean prey abundance? That is, given prey effect term B1 , what is our

power to detect a demographic response to increase prey abundance? We can address this by calculating the

changes in B1 ∗ X that are equivalent to a specified change in the intercept. Note that the logit link function

makes the relationship between the effect and response non-linear. Note also that this is a separate question
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Power to detect hypothetical intervention in the year 2000, critical p = 0.05.


Figure 1: Statistical power as a function of changes the effect size in normal-space (1.0 = no effect, 1.3 =

30% increase), using critical p value of 0.05.


3


AR008900



0.25


0.50


0.75


1.00


1.0 1.1 1.2 1.3


Effect size


S
ta

ti
s
ti
c
a
l 
p
o
w

e
r,

 P
r(

d
e
te

c
ti
n
g
 e

ff
e
c
t)

sampling


random


constant


model


glm


gam
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Figure 2: Statistical power as a function of changes the effect size in normal-space (1.0 = no effect, 1.3 =

30% increase), using critical p value of 0.1.
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Figure 3: Interpreting modeled effects of prey abundance on the linear scale


from our power to detect whether B1 is significantly different from zero, i.e. it is a separate question from our

power to detect effects of changing prey abundance on demography, given measurements of prey abundance.


Due to the way our model is formulated, the modeled response of fecundity to prey abundance is not linear,

and it also depends on age. Figure 3 shows how modeled fecundity changes as a function of prey abundance

(in units of standard deviations away from the mean) for a range of values of B1 . B1 = 1.0 implies that

the probability of an age-20 female giving birth increases from 16.7% to 35.2% when prey increases by one

standard deviation above its mean. Note that the response is approximately linear for small changes in prey

abundance, but deviates from linearity in responses to large changes. Nonlinearity is also more pronounced

for larger values of B1 .


As an example, we’ll look at the coefficients from either the GLM or GAM model - which are identical, except

for the time-varying components in the GAM. The intercept and age effects are identical, e.g.


logit(Pr(birth)) = 3.708357 + B1 ∗ X + 0.190689 ∗ age 0.004285 ∗ age2


Instead of presenting Figure 1 with the effect size on the x-axis, we can think about the values of the prey

effect B1 times the covariate X that would be needed to result in the same statistical power. Mapping these

covariate values onto effect sizes yields the following plot, which shows effect sizes are just a function of the

sampling scheme, and not the modeling approach (GLM vs GAM). An important point is that though these

lines might look linear, they’re actually much better predicted with non-linear quadratic relationships.
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Examples


Two simple examples are included here to demonstrate how the above relationships can be used.


As a first example, suppose we were using a GLM model of SRKW fecundity, assuming parameters not to be

constant across animals and time in our simulations, and were interested in finding what level of change in

the covariate would be needed to produce an effect size of 1.2 (raising fecundity rates by 20%). The steps

would be


1. From the estimated slopes in Figure 2, our predicted equation would be 1.2 = 1 + 0.886 ∗ B1 ∗ X +

0.350 ∗ X ∗ X.


2. Solving for B1 ∗X, we get a solution at B1 ∗X = 0.209. So our standardized covariate time series would

need to change from the mean (0) to 0.209/B1 to yield this desired effect. In other words, mean prey

abundance would need to increase by about 21 percent of its standard deviation if B1 is equal to 1.0,

and by correspondingly larger amounts as B1 becomes smaller, or by smaller amounts as B1 becomes

larger. Note that this is a separate question from our power to detect whether B1 is significantly

different from zero.


3. Given B1 and a mean and standard deviation of the raw data used in scaling the time series, we can

back-calculate what this value corresponds to in normal space (e.g. translate 0.209 to raw indices of

prey abundance).


As a second example, suppose we wanted to examine effects of fishing restrictions and ask what level of

statistical power would we have to detect the intervention (effect of closures). Suppose that external experts

have estimated that such closures would increase the mean of our standardized prey time series from 0 to 0.1,

i.e. increase the mean by 10 percent of a standard deviation.


1. Assuming we’re using a GAM and parameters are drawn randomly, and assuming B1 = 1, we can

use the relationships between covariate values and effect sizes to estimate an effect size of 1.09 =
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1 + 0.886 ∗ 0.1 + 0.350 ∗ 0.1 ∗ 0.1.


2. Examining the curves between power and effect sizes shown in Figure 1, an effect size for this model

(GAM, random) would produce a statistical power of ~ 0.06 if B1 was 1.0. Power would be higher if B1


were larger than 1.0, and lower if B1 were smaller. This could be evaluated by replacing 0.886 ∗ 0.1

with 0.886 ∗ B1 ∗ 0.1 in the equation above, calculating a new value in place of 1.09, and determining

the power of that new effect size based on Figure 2.


Performing a power analysis with respect to detecting whether B1 is significantly different from zero would

be very computationally expensive. The power associated with estimates of B1 are also dependent on the

nature of prey abundance – power will be higher if there is a large amount of data from years at all different

abundance levels, and lower if only a limited range of prey abundances are well represented in the data. Power

will also vary based on the number of females of prime reproductive age each year who did not give birth

the previous year. Finally, power will depend critically on the appropriateness of model assumptions, and a

misleadingly optimistic assessment of power will result if factors beyond those included in the data-generating

model affect the individual- and/or year-specific probabilities of demographic events. Observation error in

the covariate would also need to be considered in a reliable power analysis.
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