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1.  INTRODUCTION


Understanding the foraging ecology and energetic


needs of top predators is critical to informing man-

agement and conservation strategies designed to re -

cover depleted or endangered populations. Because


precisely estimating the diet of free-ranging animals


can be costly or even impossible, several approaches


have been developed to make inference about diet.


These include direct observation of feeding events


(Red path et al. 2001), analysis of stomach contents


(Cortes 1997), examining fecal samples (Trites & Joy
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2005, Ford et al. 2016), and estimating diet through


tissue chemical tracers such as fatty acids, stable


isotopes (SIs), or persistent organic pollutants (Ben-

David et al. 1997, Iverson et al. 2004, Herman et al.


2005, Krahn et al. 2007). Each of these methods has


advantages, challenges, known biases, and different


‘consumption windows’ or integration times repre-

sented by the diet sample which might range from


hours to months to years. It can therefore be benefi-

cial to compare results from different diet data or


even combine disparate sources for a more compre-

hensive understanding of population-level diet. In


this study, we improved our understanding of the


diet of a small population of killer whales (Southern


Resident killer whales, SRKWs; Orcinus orca) using


generalized additive models (GAMs) and a SI mixing


model with fecal samples from whales (2006−2011)


and SI data from both whales (2006−2016) and fish


prey (2000−2010).


SRKWs are a fish-eating population composed of 3


social groups (J, K, and L pods) inhabiting coastal


waters off British Columbia, Canada, and the west


coast of the USA. SRKWs are of conservation concern


with only 72 individuals as of July 2019 (Center for


Whale Research 2019) and are listed under both the


US Endangered Species Act and Canadian Species


at Risk Act. Lack of prey or decreased prey quality


has been highlighted as one of the main factors


thought to be contributing to the population’s decline


from 98 whales in 1995 (NMFS 2008). Researchers


have worked to elucidate foraging habits of SRKWs,


though there is limited information about the spatio-

temporal dynamics of prey availability and seasonal


foraging distribution, with K/L pods thought to in -

habit outer coastal waters as far south as California


from winter through spring and both pods inhabiting


inland waters to feed on Chinook salmon in the sum-

mer (Hauser et al. 2007).


Existing knowledge about SRKW diet comes pri-

marily from direct observations and the genetic


ana lysis of fecal samples and prey remains, and


suggests Chinook salmon Oncorhynchus tsha wyt -

scha comprise the majority (>85%) of the summer


(May− Sept) diet, and that coho salmon O. kisutch


contribute up to 50% of diet in late summer (Sept)


(Ford et al. 2010, 2016, Hanson et al. 2010). How-

ever, this evidence represents discrete seasonal


snapshots and can only lend insight into diet during


the summer, which may be different than other sea-

sons and may also exhibit interannual variability.


Skin tissue samples have also been collected from


this population for over a de cade, providing an


opportunity to examine diet through SI analysis of


the tissue over a longer time period than has been


done to date. Bulk SI data may be useful, as indi -

cators of dietary change throughout the year (par -

ticularly in non-summer months, when other data


sources are more sparsely collected) or for integrat-

ing with other data, such as fecal samples, to im -

prove the precision of existing diet estimates.


Diet can be assessed through SI mixing models that


incorporate isotopic information from potential prey


sources to estimate the relative importance of multi-

ple prey in a predator’s diet. Advances in Bayesian


methods over the last decade have supported the


development of SI mixing models for analyzing diet


composition (Bearhop et al. 2002, Moore & Semmens


2008, Semmens et al. 2009, Parnell et al. 2010, 2013),


including applications to large whales (Ryan et al.


2014) and extensions to include multivariate analy-

ses (Hopkins & Ferguson 2012) and the incorporation


of multiple sources of uncertainty (Ward et al. 2010,


Bond & Diamond 2011). The advantage of a Bayesian


approach is that disparate data sources (stomach


contents, feeding events, or fecal samples) can be


combined with SI data via an informative prior dis -

tribution, potentially reducing biases that would


arise when analyzing any single data source alone.


However, 2 complicating issues in these SI mixing


models have largely gone unaddressed thus far. The


first is not accounting for the fact that sources of diet


information represent different temporal consump-

tion windows (e.g. minutes for feeding observations,


hours to days for fecal samples, and months for SI


data). For example, combining 2 sources of data with


equal sample sizes but different consumption win-

dows would inflate the importance of the data source


with the shorter consumption window. A commonly


em ployed strategy for dealing with data sources with


different effective sample sizes is post hoc weighting


of each likelihood according to its  relative contribu-

tion (Francis 2011, Yeakel et al. 2011). However, in


this study, we illustrate how these data can instead


be combined via informative priors. The second com-

plicating issue that has not been addressed in SI mix-

ing models thus far is that variability in trophic


enrichment factors (TEFs) across species, age, nutri-

tional status, tissue type, and even environmental


variables such as water temperature (Hobson et al.


1996, Newsome et al. 2009, Busquets-Vass et al.


2017) can strongly bias estimated diet source propor-

tions (Bond & Diamond 2011). We attempted to ad -

dress uncertainty in TEFs by conducting a sensitivity


analysis, examining model results and convergence


across a range of TEF values estimated in previous


studies of ceta cean species.
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The objectives of this study were 2-fold. First, we


examined interannual and seasonal variability of


carbon and nitrogen SIs (δ13C and δ15N) across pods,


age groups, and sex to ascertain whether bulk SI


data over the study period suggest changes in


trophic position or foraging patterns that could be


used to inform hypotheses about the population’s


continued decline. These bulk isotope data had not


been previously analyzed. Second, we developed


an integrated SI mixing model that accounts for dif-

ferent tissue turnover times and consumption win-

dows and evaluates whether diet estimates using


information recovered from fecal samples are com-

parable to those derived from SI samples. As part of


this mixing model effort, we also conducted a sensi-

tivity analysis of the impact of different TEFs on


model results. This work makes a valuable contri-

bution to ongoing conservation and management


planning for a population subject to multiple anthro-

pogenic stressors and climate-related ecosystem


changes that likely impact the abundance, avail-

ability, and quality of prey.


2.  MATERIALS AND METHODS


2.1.  Sample collection


SRKW skin biopsy samples have been opportunis-

tically collected by the Northwest Fisheries Science


Center since 2006, with nearly every individual in


the population having been biopsied at least once


(Table S1 in the Supplement at www. int-res. com/


articles/ suppl/  m649 p189 _ supp. pdf). These samples


are temporally concentrated in summer and fall


months (Fig. S1; approximately 70% of samples),


when the whales typically spend more time in the


Salish Sea versus coastal waters (Hauser et al. 2007).


A total of 109 samples from 90 individuals were col-

lected from 2006−2016. Sampled individuals ranged


from 1−80+ yr old and comprised 54% females.


Approximately one-third (32%) were from J pod


(K and L pods were grouped for the purposes of this


study due to similar foraging ecology). Individuals


were previously classified as calves (0−2 yr), juve-

niles (3−9 yr), adult females (10−42 yr), young adult


males (10−21 yr), senescent females (43+ yr), and


older males (22+ yr) (Ward et al. 2013). For the pur-

poses of our analyses, we ultimately grouped animals


as calves versus non-calves.


In this study, we used SI data derived from whole


fish representing known SRKW prey species col-

lected from fisheries in the marine and estuarine


waters of the Salish Sea (O’Neill et al. 2014). These


included maturing Chinook (n = 105 collected in


Aug− Oct 2000, 2004, and 2009), coho (n = 40, Aug−


Nov of 2000 and 2003), chum Oncorhynchus keta


(n = 30, Nov 2003), and sockeye salmon O. nerka


(n = 30, Jul−Aug 2004). Full details and data are


provided in O’Neill et al. (2014). The SI data were


collected from fish samples by grinding whole fish


and collecting tissue samples that were stored at


−20°C for subsequent SI analyses based on individ-

ual Chinook sal mon and composites (representing


5−6 individuals from the same location). The stock


origins of Chinook salmon collected in non-terminal


fisheries were inferred from genetic analyses using


a coast-wide set of genotypes at 13 microsatellite


loci developed by a consortium of laboratories


(Seeb et al. 2007).


SI values of fish prey used in the mixing model


included the SI data for the aforementioned whole


fish samples of Chinook, coho, chum, and sockeye


salmon samples collected for this study and addi-

tional SI data from Chinook salmon muscle samples


reported for the Lower Fraser, Harrison stock (n =


6; Cullon et al. 2009), and steelhead trout O.


mykiss muscle samples (n = 45; Quinn et al. 2012).


The SI values of the Chinook salmon varied by


stock, associated with the regional differences in


their marine distribution, so the SI values used in


the mixing model were derived by adjusting the


measured values for each stock based on their rela-

tive abundance from  2005−2009 in the Salish Sea


(Ward et al. 2013). SI ana lyses of whole fish and


killer whale skin samples were conducted on lipid-

extracted tissues as de scribed previously (Herman


et al. 2005). Collectively, the SI data used in the


model showed Chinook and coho salmon to be the


most enriched of the prey species, with killer whale


samples adjusted for trophic enrichment (Caut et


al. 2011, Marcoux et al. 2012, Ryan et al. 2014)


falling between those and the other 3 prey species


(Fig. 1).


Fecal samples have also been collected opportunis-

tically during encounters with the SRKWs since 2006


(n = 244) and were therefore also taken primarily in


May−Sept in the Salish Sea. Given the spatially and


temporally unbalanced sample collection of fecal and


skin biopsy samples (Fig. S1), the SI values were


grouped to match previously established seasonal


periods for fecal samples (Ford et al. 2016), thus facil-

itating diet comparisons between early summer


(May−July) and late summer (Sept) periods. Data


and a description of fecal sampling methods are


available in Ford et al. (2016).
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2.2.  Spatio-temporal sampling caveats


Studying diet composition can be complicated by


variation in both prey and predator SI signatures at


both spatial and temporal scales. Previous studies


have documented a pronounced difference in SI sig-

natures among adults of some salmon species, with


more enriched values of carbon and nitrogen in Chi-

nook and coho salmon compared to other species


(Johnson & Schindler 2009), but regional differences


within a species have also been observed (Johnson &


Schindler 2012, S. M. O’Neill unpubl. data), revealing


the importance of using prey collected from the study


area of interest and including the relative abundance


of stocks throughout the region in the calculation of


salmon SI signatures. Prey samples in this study


largely represent the geographic distribution of


SRKWs in inland waters, and are therefore less in-

formative for inferring diet during winter months or


when whales are distributed along the outer coast.


In addition to spatial variability, prey SI signatures


may also vary at annual and seasonal temporal


scales. Although sampling years for salmon differed


from that of the SRKWs, we assumed that this would


not notably affect our results. Annual variation in


salmon SI signatures collected in Alaska over a 40 yr


period that included large climate shifts were demon-

strated to be far less than regional differences within


a species (Johnson & Schindler 2012). Though SI val-

ues of adult salmon may vary seasonally throughout


the Pacific Northwest, this variability has not yet


been studied, and due to this knowledge gap, we


made the necessary simplifying assumption that the


SI signatures of fish prey are not highly variable over


seasons. However, this assumption may be particu-

larly problematic, as SI signatures for adult salmon in


terminal areas may become enriched if and when in-

dividuals stop consuming prey.


2.3.  Statistical analyses


2.3.1.  GAMs


To evaluate evidence of non-linear interannual and


seasonal changes in killer whale SI signatures from


2006−2016, we fit a series of GAMs (Hastie & Tibshi-

rani 1990) with bulk δ13C and δ15N values from skin


biopsies (n = 109) as the dependent variables. Several


model structures were considered that included age,


sex, and pod as linear predictors and smoothed effects


for sampling month and year (see Table 1). A thin


plate spline was used to estimate the effect of year


and a cyclic cubic spline with 6 knots to estimate the


monthly effect. The number of knots for the monthly


effect was set rather than estimated to achieve a


greater degree of smoothness suitable for the avail-

able data given the unbalanced sample design


(Fig. S1, Table S1) and the longer consumption win-

dow. Additional models that included the comple-

mentary SI value as a fixed effect were also explored


(i.e. δ13C used as a covariate in the model for δ15N and


vice versa), though ultimately not included, with the 2


variables having a correlation of 0.49. SI signatures


were very similar between sexes, and this was there-

fore eliminated as a potential covariate.


Parametric and smooth terms were estimated using


the ‘mgcv’ package (Wood 2011) in R v.3.6.1 (R Core


Team 2019) using restricted maximum likelihood.


The contribution of fixed effects predictors to model


fit was evaluated by comparing Akaike’s information


criterion (AIC) values of the global and null models,


though pod group (J vs. K/L) and age (calf versus


non-calf) were retained in all subsequent models to


examine effect sizes, even if small, due to the perti-

nence of these variables to our research questions.


Once fixed effects predictors were determined for


both δ13C and δ15N, the best model among different


GAM structures was selected according to AIC val-

ues and the amount of deviance explained. Likeli-

hood ratio tests were not used due to the challenge of


Mar Ecol Prog Ser 649: 189–200, 2020

Fig. 1. Stable isotope values for fish prey (± 2 SD) and stable

isotope values for Southern Resident killer whale skin sam-
ples in early versus late summer periods adjusted using

average trophic enrichment factor values from the literature


(δ13C = 2.0; δ15N = 2.85)
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determining degrees of freedom given varying


smoothness and number of penalties (Wood et al.


2016, Wood 2017). Model residual plots were exam-

ined for the effects of month and year (Figs. S2 & S3).


2.3.2.  SI mixing model


To understand similarities or differences between


published estimates of killer whale diet from fecal


samples and bulk SI data collected from skin biopsies


and account for seasonal variation in diet, we devel-

oped a Bayesian SI mixing model based on fish prey


sources that comprise the majority of SRKW diet. To


avoid introducing biases, we restricted the mixing


model to a subset of the SRKW SI data that over-

lapped seasonally with the fecal samples. The subset


of SI data contained samples taken during May


through September and excluded calves (0−2 yr old)


because they are primarily nursing rather than forag-

ing (and thus may have higher δ15N signatures),


resulting in a subset of 69 samples from 62 individu-

als, 26% of which were juveniles, 30% from J pod,


and 36% male. Though whale diet may change


month to month (or seasonally) and the tissue turn-

over time of wild killer whales is uncertain and may


be greater than 2 mo, we binned whale SI data into


‘early summer’ (May−July; n = 12) and ‘late summer’


(Sept; n = 57) periods to match the seasons consid-

ered in fecal sample analysis (no skin samples exist


for the mid-summer August period).


To estimate the relative diet contribution of fish


prey from the SI data alone, we first fit a 2 isotope, 5


source mixing model (Parnell et al. 2010) using the


‘MixSIAR’ package (Stock & Semmens 2016, Stock


et al. 2018) in R. Because we were ultimately inter-

ested in exploring the effects of using the fecal sam-

ples as informative priors, we analyzed the data


from early and late summer separately rather than


treating season as a factor variable in the model.


For the estimated contribution of the 5 fish prey


species, we used Dirichlet priors that were uninfor-

mative on the simplex (α = 1). Because of potential


sensitivity to the choice of TEF values (Bond & Dia-

mond 2011), we ran the above model with 3 alterna-

tive TEF values from the literature to evaluate


which was most consistent with the killer whale and


prey SI data: (1) muscle and skin samples from bel-

uga whales Delphinapterus leucas (δ15N = 2.57 ±


0.52, δ13C = 2.29 ± 0.59; Marcoux et al. 2012), (2)


skin samples from fin whales Balaenoptera physalus


(δ15N = 1.28 ± 0.38, δ13C = 2.82 ± 0.3; Ryan et al.


2014, Borrell et al. 2012), and (3) skin samples from


captive killer whales (δ15N = 3.18 ± 0.4, δ13C = 2.43 ±


0.4; Caut et al. 2011).


Because of different consumption windows, prior


studies of killer whale diet from SI data and fecal


samples may not be directly comparable. By using a


Bayesian approach in this study, we were able to in-

corporate both sources of data into a single frame-

work, with diet proportions estimated from the fecal


samples, to construct informative prior distributions.


Like other prior distributions, the uninformative


Dirichlet distribution (α = 1) can be adjusted for a var-

ied prior sample size (Gelman & Rubin 1992, Gelman


et al. 2004). The hyperparameters of the Dirichlet


control the location and scale, E[yi] = αi/∑αi, but the


sum of hyperparameters ∑αi can also be interpreted


as the effective sample size of the prior (Morita et al.


2008). We constructed informative priors for each


season (early summer, late summer) using data from


Ford et al. (2016) that included the number of fecal


samples collected, relative contribution from each of


the 5 prey species, and tissue turnover time. As an ex-

ample of how these priors were constructed, suppose


50 fecal samples were collected and proportionally


assigned to prey species as 35.5 Chinook, 9.5 coho,


4.25 chum, 0.50 sockeye, 0.25 steel head. Because


these fecal samples represent a smaller consumption


window (1−2 d) compared to SI data, the prior effec-

tive sample size needs to be ad justed. Assuming a


hypothetical turnover time of killer whale skin to be


30 d, the weighted prior can be calculated by multi-

plying the proportional assignments by (2/30), re-

sulting in a weighted vector (2.33 Chinook, 0.67


coho, 0.28 chum, 0.03 sockeye, 0.02 steelhead) with


a total effective sample size of 3.33 (= 50 × 2 / 30) in-

stead of 50. The final set of hyper parameters is de-

rived by adding the initial count from the uninforma-

tive prior (αi = 1) to each, yielding (3.33, 1.67, 1.28,


1.03, 1.02). Given uncertainties in the turnover time


of skin tissue in wild killer whales, we ran a sensitiv-

ity analysis with 2 models for each informative prior,


using skin turnover times of 30 and 60 d, in addition


to the models with an uninformed prior as described


above. Combinations of the in formed TEF priors (n =


3), skin turnover times (n = 3), and season (n = 2) re-

sulted in a total of 18 models. For each model, we


ran 3 parallel Markov chain Monte Carlo simulations


with ‘MixSIAR’ and ‘JAGS’ (Plummer 2003) and gen-

erated 50000 samples from each, with the first 25 000


iterations discarded as a burn-in. Convergence was


assessed using the ‘CODA’ package (Plummer et al.


2006) using R̂ values < 1.1 (Gelman & Rubin 1992,


Gelman et al. 2004). Code to replicate our ana lyses is


included in Text S1 in the Supplement.
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3.  RESULTS


3.1.  GAMs


The best models for δ13C and δ15N were selected


based on the combination of AIC value, deviance


explained, and our a priori interest in examining dif-

ferences across pods (Table 1). The selected best


model for both δ13C and δ15N included the fixed


effects of pod and age group, a smooth term for year,


and a pod-specific smooth term for month. Including


predictor covariates notably improved model fit


(Table 1).


As noted above, the best model for δ13C values


included non-significant linear predictors for age and


pod, a global smooth term for year (effective degrees


of freedom [edf] = 6.1, p < 0.001), and a significant


smooth effect of month for J pod (edf = 1.9, p < 0.01)


and K/L pods (edf = 3.3, p < 0.001) (Table 2), though


there was also support for a global smooth effect of


month (ΔAIC = 1.99). The shape of the smooth term


for the effect of month on δ13C was different


between pods, with a peak in δ13C in March and


April for K/L pods, but a smaller, later peak in June


and July for J pod (Fig. 2). The change in δ13C over


the study period as indicated by the smooth term for


the effect of year indicated greater enrichment in


2010 and 2015 (Fig. 2).


For δ15N values, the best model estimated lower SI


signatures for non-calves (bˆ = −0.68, p < 0.001), no


difference between pods, a global smooth effect for


year (edf = 6.4, p < 0.001), and


non-significant, pod-specific


smooth effects of month, with


a deviance ex plained of 60%


(Tables 1 & 2). The pod-spe-

cific smooth effect of month


was much smaller than that of


δ13C and showed a slight in -

crease in δ15N in May for K/L


pods, butalaterincreaseinJuly


and August for J pod (Fig. 2).


The smooth term for interan-

nual variability indicated that


values were notably more en -

riched in 2010, dropped, and


thenbe gan in creasing again in


2013 (Fig. 2). The interannual


variability for δ15N signatures


was higher in magnitude than


forδ13C(edf=6.07, p<0.001).


3.2.  SI mixing model


Of the 18 SI mixing models used in our analysis, all


but 2 (models for late summer using TEFs from Caut et


al. 2011 and Marcoux et al. 2012 with zero and 60 d


skin turnover times respectively) successfully con-

verged (Table 3). The estimated relative contribution


of the 5 prey species was similar across models, but be-

cause all the models using the TEF prior from fin


whales (Ryan et al. 2014) converged, we focused the


194 

Model                                                                               AIC   ΔAIC  Weight     Dev.

                                                                                                                            expl. (%)


δ15Ni ~1                                                                           150.70     −          −             −

δ15Ni ~ agei + podi + sexi + monthi + yeari                   123.51     −          −             −

δ15Ni ~ agei + podi + s(monthi) + s(1⏐ yeari)                 77.90 3.13     0.12          59

δ15Ni ~ agei + podi + s(monthi) + s(yeari)                     74.77 0.00    0.56         58

δ15Ni ~ agei + podi + s(monthi) + s(yeari,podi)             81.43 6.65     0.02          59

δ

15Ni ~ agei + podi + s(yeari, podi) + s(monthi,podi)  76.46 1.69    0.24          60

δ15Ni ~ agei + podi + s(monthi,podi) + s(yeari,podi)     79.16 4.38    0.06         61


δ13Ci ~ 1                                                                          116.18     −          −             −

δ13Ci ~ agei + podi + sexi + monthi + yeari                   102.46     −          −             −

δ13Ci ~ agei + podi + s(monthi) + s(1⏐ yeari)                 42.25 2.71     0.16         60

δ13Ci ~ agei + podi + s(monthi) + s(yeari)                     41.53 1.99    0.23          60

δ13Ci ~ agei + podi + s(monthi) + s(yeari,podi)             58.64 19.10    0.00         52

δ

13Ci ~ agei + podi + s(yeari, podi) + s(monthi,podi)  39.54 0.00    0.61          62

δ13Ci ~ agei + podi + s(monthi,podi) + s(yeari,podi)     57.06 17.52     0.00         55


Table 1. Null and candidate models estimating parametric and smooth effects of ex-
planatory variables for Southern Resident killer whale δ13C and δ15N isotope values

with corresponding Akaike’s information criterion (AIC), ΔAIC, model weight, and de-
viance explained, with the best model indicated in bold. Null and linear models are not

comparable to generalized additive models and therefore differences in model fit are


not included (−)


Term                      Estimate/edf    SE              t/F          p


δ
15Ni ~ agei + podi + s(yeari) + s(monthi,podi)


(Intercept)                    16.97          0.15         116.81      ***

age: non-calf               −0.68          0.15           −4.55      ***

pod: K/L                        0.02          0.07             0.28 

s(month, J pod)             1.11          4.00             0.52 

s(month, K/L pods)       1.31          4.00             0.67 

s(year)                            6.40          7.38           10.99      ***


δ
13Ci ~ agei + podi + s(yeari) + s(monthi,podi)


(Intercept)                 −16.18          0.12       −131.90      ***

age: non-calf               −0.03          0.12           −0.28 

pod: K/L                        0.04          0.06             0.68 

s(month, J pod)             1.91          4.00             2.66       **

s(month, K/L pods)       3.34          4.00           10.84      ***

s(year)                            6.07          7.09             9.11      ***


Table 2. Estimated parametric and smooth effects, effective

degrees of freedom (edf), standard error, test statistic critical

values (t-value/F), and p-values for best generalized addi-
tive models of Southern Resident killer whale δ13C and δ15N


isotope values. ***p < 0.001; **p < 0.01
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following results on those. Because


of the uncertain lag time of tissue as-

similation, estimates from the SI mix-

ing model may not be directly compa-

rable to the fecal samples alone (Ford


et al. 2016) but are summarized below.


As expected, using SI data to infer


killer whale diet suggests that diet


is dominated by Chinook salmon,


where in both early and late summer


periods, the contribution of Chinook


was estimated to be more than 50%


on average. Using the SI data alone


(no prior information), the estimated


consumption of Chinook was higher


in samples taken in late summer


(Table 3). However, when the in -

formative prior was in cluded, the


contribution of Chin ook decreased in


samples from the late summer period


(59 vs. 50%, and 54 vs. 51% for 30


and 60 d, respectively; Fig. 3), similar


to what was suggested by the fecal


data (Ford et al. 2016). The differ-

ence between these 2 results is likely


due to the in creased precision that is


achieved when using an informative


prior for the estimate in the early


195


Fig. 2. Predicted stable isotope values based on best-fit generalized additive models showing Southern Resident killer whale

pod-specific smooths for month and a global smooth for year in addition to fixed effects for pod and age group for δ15N and


δ13C, with 95% CIs represented by grey shading and black bars


TEFs                             Season     Skin         Max. Chinook diet proportion

(Reference)                                turnover         R̂           Lower   Mean   Upper

                                                                                         95%                    95%


δ15N = 1.28 ± 0.38,         Early         0             1.01           0.21       0.50       0.70

δ13C = 2.82 ± 0.30                           30            1.03           0.40       0.59       0.73

(Ryan et al. 2014)                           60            1.03           0.33       0.54       0.70


                                       Late          0             1.03           0.35       0.53       0.63

                                                        30            1.05           0.32       0.50       0.61

                                                        60            1.06          0.34       0.51       0.62


δ15N = 3.18 ± 0.4,           Early         0             1.02          0.19       0.49       0.69

δ13C = 2.43 ± 0.4                             30            1.01           0.39       0.58       0.72

(Caut et al. 2011)                            60            1.01           0.34       0.55       0.72


                                       Late          0             1.13           0.34       0.54       0.63

                                                        30            1.03           0.32       0.50       0.61

                                                        60            1.06          0.31       0.51       0.62


δ15N = 2.57 ± 0.52,         Early         0             1.03           0.22       0.49       0.70

δ13C = 2.29 ± 0.59                           30            1.04           0.39       0.59       0.72

(Marcoux et al. 2012)                     60            1.08          0.33       0.55       0.71


                                       Late          0             1.08          0.30       0.52       0.63

                                                        30            1.08          0.31       0.49       0.60

                                                        60            1.13           0.29       0.50       0.62


Table 3. Summary of 18 stable isotope mixing models considered in the study,

including trophic enrichment factors (TEFs), season (early or late summer), as-
sumed skin turnover time in days (for integration with fecal samples, with 0 rep-
resenting models with an uninformative prior), and the maximum value of R̂


used to assess convergence (values <1.1 indicate convergence). The posterior

summaries of the estimated diet proportion of Chinook salmon is also shown


(mean, lower 95%, upper 95%)
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summer period (Fig. 3) when sample sizes for SI data 

were smaller. The finding that the SI mixing model 

with both data sources generally supports that of the 

fecal data alone was expected and potentially pro- 

vides useful information for conservation and man- 

agement because fecal samples are more readily 

available and affordable to collect. 

After Chinook, coho salmon comprised the next 

greatest contribution to overall diet, followed by the 

other 3 salmonid species, depending on the season. 

Similar to Chinook, the contribution of coho changes 

slightly depending on the season and inclusion of the 

informative prior. With an uninformative prior, con- 

sumption of coho was estimated to be approximately 

23 and 9% from the early and late summer period 

samples, respectively (Fig. 3). Using the informative 

prior, however, the mean posterior contribution was 

approximately 13% in both periods (Fig. 3), which is 

closer to what is expected based on fecal data alone. 

The contribution of chum and sockeye salmon was es- 

timated to be very small in samples from both seasons 

regardless of TEFs used, which again is in agreement 

with the fecal samples (Fig. 3). Similarly, the estimated 

proportion of steelhead was notably lower in samples 

from early summer compared to late summer (8 vs. 

27%), using both informed and uninformed priors. 

4.  DISCUSSION 

Through the application of GAMs and a Bayesian SI 

mixing model, this study examined the relative pro- 

portion of fish prey in SRKW diets throughout the 

summer and how the nitrogen signa-

tures (commonly used as a proxy for


trophic position) and/or carbon food


web source may have changed over


the study period for different pods.


Results from the SI mixing model in-

dicated that estimated prey contribu-

tions were relatively similar when in-

corporating the fecal data as an


informative prior versus using the SI


values alone with an uninformative


prior. However, it is notable that pre-

cision was higher for estimated Chi-

nook and coho salmon contributions


using an informative prior from the


fecal sample data, particularly when


sample sizes were low (i.e. early sum-

mer). With large sample sizes (i.e. late


summer), our informative prior was


overwhelmed by the killer whale SI


data and there was little difference between the prior


and posterior estimates. While in general we recom-

mend the use of informative priors for SI mixing mod-

els, we caution that discrepancies may arise between


prior and posterior estimates when the tissue turnover


times associated with SI data are on different time -

scales than the sampling of data used for generating


the prior. As an extreme case, integrating SI data and


fecal data sampled from the same individual on a sin-

gle day attempts to reconcile short-term diet informa-

tion (1−2 d) with diet over a much longer timescale.


The results from both the SI mixing model and


GAMs support and validate previous SRKW diet esti-

mates (e.g. the contribution of Chinook salmon de -

creases into the fall and winter; Ford et al. 2016) and


what is known about seasonal whale distribution pat-

terns (Olson et al. 2018). Prey isotopic signatures


show that Chinook and coho salmon have more


enriched δ15N and δ13C than other Pacific salmon,


consistent with other evidence indicating that they


feed at a higher trophic level and use coastal ecosys-

tems more extensively than chum, sockeye, and


steelhead (Quinn 2018). Because of tissue assimila-

tion time, the skin tissue enriched in δ13C in spring


(Fig. 2) could be indicative of higher Chinook or coho


consumption. Another potential reason for this δ13C


enrichment in killer whales is that δ13C signatures for


Chinook likely differ by run type (spring, summer,


fall) and life history type (resident, ocean migrant).


The pod-specific month effects predict peak δ13C val-

ues for K/L pods in the spring, when these whales


may be encountering Chinook enriched in δ13C (or


consuming non-salmon prey species; M. B. Hanson
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Fig. 3. Mean posterior estimates of prey contribution to Southern Resident killer 
whale diet in early versus late summer sampling periods using trophic enrich- 
ment factor values from Ryan et al. (2014) as the informative prior and assuming 

that skin tissue samples represent 30 d of diet information
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un publ. data). The seasonal pattern in the GAMs


could also be mirroring the higher proportion of


steelhead and lower proportion of Chinook esti-

mated in the mixing model for the late summer


period, though this connection is difficult to make


given the uncertainty in the lag time between prey


consumption and tissue assimilation.


In terms of evaluating changes in δ15N over time, it


is clear that there is interannual variability, but avail-

able data limits our ability to identify the likely cause


of this variability. It may be that shifting isotopic sig-

natures of prey are driving observed interannual


variability in SRKW SI values (individual salmon


stocks have variable distributions year to year, and


by age; Quinn et al. 2014, Quinn 2018), though sock-

eye sal mon stocks in Alaska exhibited relatively sta-

ble SI values across a range of oceanographic condi-

tions and over a 40 yr period (Johnson & Schindler


2012). Year-to-year variability in SRKW δ15N over


time could be both an indicator of poor nutritional


status in some years, and/or that killer whales con-

sume more Chinook salmon in years when they are


more abundant. Greater enrichment in isotopic val-

ues in 2010 and since 2013 could indicate greater


Chinook consumption, which aligns with increasing


coastwide salmon indices observed since 2008


(Pacific Salmon Commission 2018). Unfortunately,


both prey and killer whale bulk SI data are limited


for 2012 and 2013 when whale SI values were lowest,


preventing a robust comparison to 2008 when en -

rich ment was similarly low. Additionally, examining


SRKW δ15N values and indices of salmon abundance


is complicated by the fact that the available indices of


abundance may not reflect what is available to the


whales. Future work formally examining correlations


between δ15N and indices of salmon abundance or


other measures of SRKW health could help deter-

mine whether this trend is due to changes in salmon


diet (and therefore SI signatures) based on ocean


conditions (Brodeur et al. 2007) or SRKW catabolism


of endogenous protein tissues due to nutritional


stress (Kurle & Worthy 2001, Newsome et al. 2010,


Horstmann-Dehn et al. 2012, Matthews et al. 2019).


While there is currently no direct evidence linking


trophic position or diet composition with nutritional


stress, ongoing efforts are aiming to link variability in


prey abundance to changes in individual nutritional


stress and body condition. Interannual variability


estimated by GAMs indicated that there were no sig-

nificant differences between the pod groups for


either δ15N and δ13C when pod was included as a fac-

tor variable, and no sex-specific differences were


found in SI signatures despite recent evidence sug-

gesting greater foraging effort in males, particularly


at depths corresponding to Chinook salmon habitat


(Tennessen et al. 2019).


Making inferences about seasonal patterns in the


diet of a top predator based on imperfect knowledge


about tissue assimilation and unbalanced spatio-tem-

poral sampling of consumer and prey is challenging.


Disentangling the potential effects of diet shifts of


predators and prey in addition to nutritional stress


highlights the multiple uncertainties that underlie


SRKW diet studies and potential future research di-

rections. First, it is likely that K and L pods consume a


small amount of other groundfish species (for which


SI data are not available) on the coast during winter


and spring (M. B. Hanson et al. unpubl. data), and


though our mixing model includes the majority of


prey items in killer whale diets, not accounting for all


prey sources can lead to bias in SI mixing models


(Phillips & Gregg 2001). We therefore cannot make


inference about the contribution of non-salmon spe-

cies to overall diet. Second, the wide range of tissue


assimilation and TEF values estimated for cetaceans


across species, tissue types, water temperatures, and


geographic ranges (latitude) represent a large area of


uncertainty, since TEFs and the consumption window


are foundational to examining seasonality in SI data.


Even within a species, considerable variation has


been estimated depending on population and method-

ology (Wild et al. 2018). For SRKWs, it is possible that


TEFs differ across age groups (due to different growth


rates or reproductive status) and pods (due to differ-

ential metabolic demands in inland versus coastal en-

vironments). Third, there is a large de gree of uncer-

tainty surrounding salmon SI data, where isotopic


signatures likely vary due to differences between


specific stocks, seasonal runs, fish age, and size. It is


also unknown to what extent killer whales consume


resident Chinook salmon that do not migrate to the


open ocean and therefore differ in their isotopic com-

position and spatio-temporal distribution. Data aggre-

gated across these elements likely does not capture


the specificity of foraging that may be needed in order


to prioritize salmon recovery actions that could


benefit SRKWs, though it is clear that Chinook salmon


are a critical prey resource for SRKWs.


Despite these uncertainties, results from this analy-

sis underscore that understanding timescales mat-

ters, particularly for diet studies of long-lived spe-

cies. Timescales govern seasonal movements and


foraging, and are coupled with salmon runs and


physical ocean conditions. This intricacy is difficult to


simplify and yet very important in developing man-

agement alternatives that address potential nutri-
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tional stress. To that end, while uncertainty about


SRKW diet remains, this study illustrates a method


that further enhances the power of SI mixing models


by accounting for different consumption windows


across different diet data sources. Combining multi-

ple data sources maximizes the utility of the unique


information represented by each, and the chained


hierarchical approach prevents one source from


masking information in another due to varying sam-

pling sizes. The mixing model with both fecal and SI


data resulted in improved parameter estimation


when sample sizes were low but also resulted in an


estimated diet composition relatively similar to that


of the fecal data alone, which will likely prove useful


given the affordability and greater availability of


fecal samples. This framework notably improves the


precision of diet proportion estimates in certain cir-

cumstances and could be developed further through


formal integration of not only different diet data but


also information about tissue turnover rates, diges-

tion, energetic requirements, and even age or repro-

ductive status. Working to evaluate existing data in


ways that can inform hypotheses about the continued


decline of this population and the importance of Chi-

nook salmon recovery will be critical to future con-

servation and management strategies.
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