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Abstract47 

Recovering small, endangered populations is challenging, especially if the drivers of declines are
48 

not well understood. While infrequent births and deaths may be important to the outlook of
49 

endangered populations, small sample sizes confound studies seeking the mechanisms
50 

underlying demographic fluctuations. Individual metrics of health, such as nutritive condition,
51 

can provide a rich data source on population status and may translate into population trends. We
52 

use aerial photogrammetry data to build a Bayesian predictive model of body condition changes
53 

in endangered Southern Resident killer whales (SRKWs), providing a unique test case
54 

comprising decades of demographic monitoring, a small population size, and repeated condition
55 

measurements of individual whales. We demonstrate that fluctuations in SRKW body condition
56 

can be explained by the abundance of Chinook salmon, providing targeted management
57 

opportunities. We also show that whales in poor body condition—reflecting depleted fat
58 

reserves—are more likely to die, linking changes in condition to population viability.
59 

60 

Key words: Orcinus orca; resident killer whale; foraging ecology; body condition; drones;
61 
photogrammetry; adaptive management; multi-state modeling.
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Introduction71 

Endangered species with small population sizes approaching extinction or local extirpation
72 

present a diversity of management challenges (Soulé 1987, Dennis 1989). When the causes of
73 

population declines are not well established it is difficult to identify management strategies that
74 

will prevent declines and promote recovery. Studies of small populations by definition suffer
75 

from sample size limitations (Walsh 2000, Brosi and Biber 2009), complicating efforts to
76 

identify stressors that may be influencing population trends (Schönbrodt and Perugini 2013). For
77 

example, infrequent births or deaths may have dramatic impacts on population trends, but may
78 

be too sparse to identify mechanisms. In these cases, non-invasive metrics of individual health
79 

can help identify drivers of population trends and allow for management strategies that preempt
80 

demographic casualties that impact population viability, such as the loss of reproductive females.
81 

82 

Nutritive condition in long-lived vertebrates can provide a sensitive signal of short-term
83 

individual or population health. Changes in condition may reflect changes in the environment or
84 

foraging success, and persistent variation may translate into population trends (Berger 2012,
85 

Boulanger et al. 2013, Vindenes et al. 2014). Aerial imaging technology has provided one
86 

example of such non-invasive individual health metrics (Perryman and Lynn 2002).
87 

Photogrammetry with remotely controlled drones has been used increasingly over the past 5-10
88 

years as drones have become cheaper, safer and more efficient compared with traditional
89 

photogrammetry using manned aircraft (Durban et al. 2015). These methods have been widely
90 

applied to both terrestrial and marine species (Perryman et al. 2014, Hu et al. 2020). Working
91 

with marine or other aquatic organisms is particularly challenging, as individuals are highly
92 

mobile and may spend little time near the surface where they can be imaged. Nevertheless, aerial
93 
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photogrammetry has been used to collect individual measurements of marine mammal species
94 

including investigations of life history characteristics (Christiansen et al. 2016, Groskreutz et al.
95 

2019) and nutritive condition (Christiansen et al. 2018, Fearnbach et al. 2018, 2019). A strength
96 

of aerial photogrammetry is that it can non-invasively provide quantitative metrics of body
97 

condition at the individual level (Durban et al. 2015, Fearnbach et al. 2018), which can be used
98 

to evaluate the health or status of a large portion of a population in near real time. Demographic
99 

trend data, in contrast, has high inherent variability in small populations and may need to be
100 

collected for years before it provides reliable inferences about population health.
101 

102 

Collecting individual health data from wild populations may be challenging, particularly if
103 

individuals can’t be identified or the population is not censused. Killer whales (Orcinus orca)
104 

represent an ideal case for relating individual health metrics to the environment, as population
105 

sizes are typically small, and individuals are readily identifiable. One of the smallest populations
106 

of killer whales, the Southern Resident killer whale (SRKW) population, is censused annually
107 

and demographic characteristics (age, sex) have been recorded for the entire population since the
108 

mid 1970s (Center for Whale Research 2020). This small (n=73) population of fish-eating killer
109 

whales is found in the eastern north Pacific (Ford et al. 1998) with a range including coastal
110 

waters from central California to Southeastern Alaska, and core summer habitat in the Salish Sea
111 

between Puget Sound and Southern Vancouver Island (National Marine Fisheries Service 2019).
112 

Because of its small size and a decline in abundance of approximately 25% since 1995, the
113 

SRKW population is listed as endangered under the Endangered Species Act (ESA) in the United
114 

States and the Species-at-Risk Act (SARA) in Canada. The diet of SRKWs comprises primarily
115 

Chinook salmon (Oncorhynchus tshawytscha), although other species such as coho salmon
116 

AR010567



 5

(Oncorhynchus kisutch), chum salmon (Oncorhynchus keta), halibut (Hippoglossus stenolepis)
117 

and groundfish have also been identified in their diets (Hanson et al. 2010, Ford et al. 2016).
118 

Three main stressors are thought to be responsible for SRKW population declines: 1) elevated
119 

levels of environmental pollutants in their core habitat range that could impact survivorship and
120 

reproductive success (Krahn et al. 2009); 2) increasing vessel noise and disturbance in the Salish
121 

Sea which could interfere with communication and foraging efficiency (Lusseau et al. 2009); and
122 

3) declining Chinook salmon populations and therefore prey scarcity (Ford et al. 2010), which in
123 

addition to direct effects could compound the other stressors.
124 

125 

Several studies have supported the hypothesis that prey limitation is a primary threat to the
126 

SRKW population, linking aggregates of Chinook salmon abundance to both fecundity and
127 

mortality (Ward et al. 2009, Ford et al. 2010, Vélez-Espino et al. 2014) as well as to declines in
128 

adult body size (Fearnbach et al. 2011, Groskreutz et al. 2019). However, the range of both
129 

SRKWs and their salmon prey is enormous, encompassing over 3,000km of coastline, and
130 

identifying the prey populations that are most important for SRKWs is challenging. Chinook
131 

salmon face a complex suite of stressors including habitat modification and degradation (Greene
132 

and Beechie 2004), restricted access to spawning tributaries (Sheer and Steel 2006), fisheries
133 

pressure (Ruckelshaus et al. 2002), increased natural mortality due to recovering marine mammal
134 

populations (Chasco et al. 2017), and climate impacts (Crozier et al. 2008). Chinook populations
135 

from four tributaries within the SRKW range are themselves listed as endangered in the United
136 

States or Canada, with several others listed as threatened. To date, no studies have been able to
137 

identify relationships between specific salmon populations and SRKW survivorship or
138 

population health (Pacific Fishery Management Council 2020).
139 
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140 

Aerial photogrammetry can provide a precise measure of individual killer whales’ nutritive
141 

condition by quantifying the relative amount of adipose fat stored behind the cranium; as
142 

individuals decline in nutritive condition, they metabolize adipose fat in addition to blubber
143 

stores (Fearnbach et al. 2019). As such, photogrammetry datasets potentially provide more
144 

power to evaluate relationships between prey abundance and population status compared with
145 

efforts to link prey to infrequent births and deaths. In this study, we used aerial photogrammetry
146 

images of individually-recognizable SRKWs collected in 7 September field efforts across 12
147 

years (2008-2019) to evaluate how changes in body condition might be related to the abundance
148 

of different Chinook salmon populations. The SRKW population is composed of three distinct
149 

collections of matrilineal family units (hereafter referred to as J, K and L pods) (Parsons et al.
150 

2009) and we considered each pod separately in our analyses based on previously described
151 

differences in range and movement patterns (Riera et al. 2019, National Marine Fisheries Service
152 

2019).
153 

154 

Methods155 

Data collection156 

Aerial images of Southern Resident killer whales were collected in the Salish Sea near the San
157 

Juan Islands, WA (Fearnbach et al. 2011, Groskreutz et al. 2019) in the month of September in
158 

each of seven years. Images were collected from a manned helicopter in 2008 and 2013
159 

(Fearnbach et al. 2011, 2018) and using a drone in 2015-2019 (Durban et al. 2015, Fearnbach et
160 

al. 2019). Briefly, vertical images were collected using a digital camera at altitudes of 230-460 m
161 

by helicopter and 25-45 m by drone. Despite changes in aircraft platforms, all images were
162 
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obtained with a Normal lens to ensure a flat image with no wide-angle distortion, with the
163 

specific camera and lens chosen based on aircraft altitude to achieve a water-level pixel
164 

resolution of 1-2cm (Durban et al. 2015). Research activities were permitted by the National
165 

Marine Fisheries service in the U.S. and the Department of Fisheries and Oceans in Canada, and
166 

aerial photogrammetry was approved as an observational (non-invasive) method by the
167 

Institution Animal Care and Use Committee of the NOAA Southwest Fisheries Science Center
168 

Marine Mammal and Turtle Division. Individual whales can be identified by unique markings
169 

that are visible from aerial images, allowing measurements to be linked to individual whales of
170 

known age and sex (Fearnbach et al. 2011, 2019, Durban et al. 2015). As a quantitative metric of
171 

body condition we used the eye patch ratio (EPR), which is the ratio of the pixel distance
172 

between the inside of the white eye patch pigmentation at their anterior end relative to their
173 

distance at 75% of the eye patch length, described in Fearnbach et al. (2019) (Figure 1). The eye
174 

patch ratio is a sensitive metric of nutritive condition as it measures the relative amount of
175 

adipose fat stored behind the cranium. As killer whales become nutritionally stressed, they lose
176 

this adipose tissue along with blubber fat reserves, resulting in lower EPRs, and as such this is a
177 

more sensitive metric of nutritive condition in killer whales compared to other commonly used
178 

metrics such as head width to body length ratios (Fearnbach et al. 2019). Multiple measurement-179 

quality images were available of a single whale on a given day and within years, and we used the
180 

mean EPR for each whale in each year because EPR calculations had very low variability (e.g.
181 

typical coefficients of variation of 0.003 to 0.008 for within year variability of a given whale)
182 

(Fearnbach et al. 2019).
183 

184 

Accounting for age & sex
185 
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To prepare the raw eye patch ratio data for analysis, we first fit a generalized additive model to
186 

the EPRs using the mgcv package (Wood 2006) in R (R Core Team 2016) to account for
187 

expected variability in nutritive condition and EPRs by age and sex. Age and sex data were
188 

available from long-term demographic modeling efforts (Center for Whale Research 2020). We
189 

fit separate smooth terms to male and female EPRs from whales aged 0-60 (Figure 1). We used
190 

the raw residuals (observed EPR minus mean EPR estimated by the spline fit) as the basis for
191 

defining body condition classes. Ages of a few mature Southern Resident killer whale females
192 

that were reproductive when monitoring began in the 1970s are not known precisely, so we
193 

calculated residuals for those whales by subtracting observed EPRs from the mean EPR of
194 

whales age 60+. We aggregated the residuals of all EPR measurements from all pods across all
195 

years and split that distribution into five equal quantiles, representing the age- and sex-196 

normalized body condition classes to be used in the multi-state model, with body condition class
197 

1 (BC1) being the lowest 20% quantile and BC5 being the highest 20% quantile. Finally, we
198 

created a matrix of individuals’ body condition classes by year, including unsampled years 2009-199 

2012 and 2014. In unsampled years, and in years where a whale was not photographed despite
200 

survey effort, individual condition was logged as ‘NA’. Known deaths from the annual census
201 

(Center for Whale Research 2020) were also included in the matrix to facilitate estimation of
202 

both age/sex- and body condition-specific mortality probabilities. Because photogrammetry data
203 

were collected in September of each year, we considered deaths that occurred between October
204 

and the following September to belong to the following survey year. For example, if a whale was
205 

measured in September 2016, and died in November 2016, we logged that death in the following
206 

time step of the condition matrix, 2017, to allow the model to account for the transition from the
207 

condition measured in September 2016 to death. Two known anthropogenic-related deaths
208 
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(whales J34 and L95) were not included in the model, and the condition matrix for those whales
209 

was left as unknown (‘NA’) after their last measurements, to prevent them from influencing
210 

mortality probabilities for their respective body condition classes prior to death.
211 

212 

Statistical model
213 

We developed a Bayesian multi-state modeling framework to evaluate changes in body condition
214 

between years and the probability of mortality of different condition classes, after accounting for
215 

differences in mortality by age and sex. All modeling was performed in JAGS via R (Plummer
216 

2003) and built upon previous multi-state modeling approaches (Kery and Schaub 2012). The
217 

model estimated annual transition probabilities between body condition classes, as well as
218 

transitions from each body condition class to death, which are the condition-specific mortality
219 

probabilities. An increase of one condition class (e.g. BC 1 to BC 2; BC 3 to BC 4) was
220 

considered ‘Growth’ (G). Increases of two or more condition classes were considered multiple
221 

single Growth steps and their probabilities were therefore exponentiated (e.g. BC 1 to BC 3 = G2;
222 

BC 1 to BC 4 = G3). Remaining in the same condition class in two sequential years was
223 

considered ‘Stable’ (S). A decrease of one condition class was considered ‘Decline’ (D) and
224 

decreases of two of more condition classes were exponentiated as with Growth transitions. The
225 

advantages of using power functions for the G and D elements are that the number of parameters
226 

is reduced relative to an unconstrained matrix, and transitioning across multiple steps is
227 

constrained to be less likely than transitioning a single step. In order to make population-level
228 

inferences from individual changes in condition, all animals transitioning in the same direction
229 

and magnitude contributed to the same transition probabilities, regardless of their starting
230 

condition class:
231 
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234 

where rows are the condition class in year t-1, columns are the condition class in year t, and the
235 

matrix is populated by transition probabilities for year t. To make the sum of each row equal to 1,
236 

we normalized each row by dividing each element by its row sum (e.g. Cobb & Chen 2003; Liu
237 

et al. 2008). Mortality probabilities M were dependent on an individual whale’s age, sex, and
238 

body condition. As a result, differences in mortality probability based on age, sex, and body
239 

condition slightly affected transition probabilities during row normalization. This can be
240 

interpreted as making transition probabilities between condition classes conditional upon a whale
241 

surviving.
242 

243 

Mortality probability was estimated in two steps: first based on the age and sex of a whale and
244 

then based on the condition class of that whale. We assigned an age class to each whale at each
245 

time step in the model, following previous classifications used for SRKW demographic
246 

modeling (Ward et al. 2013). Both males and females age 0-2 were defined as calves, and 2-10
247 

as juveniles. Females age 10-44 were defined as young females and 44+ as old females. Males
248 

age 10-22 were defined as young males and 22+ as old males (Figure 1). The baseline mortality
249 

probability for whales in each age class was defined as:
250 


 ~ [��
 �,]251 
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�
~ [0,1]252 

where is the baseline mortality probability for a whale in age class a (of the 6 age / sex
253 

classes defined above), which is normally distributed around the overall mean mortality
254 

probability, �
, with variance  in logit space. We then added a random effect of body
255 

condition such that the mortality probability of a whale at a given time step was calculated as:
256 

, = . (,

+ ,


)257 

 ~ [0,]258 

where M is the mortality probability (in proportional space) for whale i at time t,  is the
259 

age-specific baseline mortality probability (in logit space) for whale i given its age and sex class
260 

at time t, and  is the condition-specific effect (in logit space) on baseline mortality for whale
261 

i given its body condition class bc at time t.  for body condition class bc (1-5) is normally
262 

distributed around zero with variance  in logit space. After applying the random effect of body
263 

condition to the whale’s baseline mortality probability, that sum is converted to proportional
264 

space using the inverse logit transformation.
265 

266 

To incorporate salmon abundance covariates into the model we used a cumulative logit
267 

transformation to allow covariates to have independent relationships to Growth and Decline
268 

transition probabilities while remaining bounded by [0,1] in proportional space. For Growth and
269 

Decline transitions we used the following equation:
270 

271 


, = +∗+,  272 

273 

AR010574



 12

Where Transition is the uncorrected transition probability in cumulative logit space of transition
274 

type c (i.e. G or D) at time t, intercept and slope are the linear relationship terms for each
275 

transition type c, covariate is the salmon index at time t, and  is the residual error around the
276 

linear fit for transition type c at time t, with
277 

278 


, ~ [0,]279


280 

where the  terms for each transition type c are normally distributed around zero with variance .
281 

In the cumulative logit transformation, one parameter must be fixed at 1 for identifiability, which
282 

we applied to the probability of Stable condition (S):
283 

284 

, = 1285 

286 

The uncorrected transition probabilities are then transformed to proportional space so that they
287 

are bounded by [0,1]:
288 

289 


, = 


,


∑ 
 

290


291 

where Prob is the corrected probability for each transition type c (G, D, and S) at time t.
292 

293 

Salmon covariates294 

We evaluated 7 different Chinook salmon abundance indices to identify potential relationships
295 

between SRKW body condition and prey availability. We only considered Chinook salmon
296 
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given the reported importance of Chinook to SRKW life history and reproductive success (Ward
297 

et al. 2009, Ford et al. 2010). We used estimates of Chinook salmon abundance from a model
298 

used to manage salmon harvest (Fishery Regulation Assessment Model; FRAM) (Pacific Fishery
299 

Management Council 2008). The FRAM model estimates the abundance of multiple west coast
300 

salmon populations (or 'stocks') available to fisheries, and its outputs were recently synthesized
301 

with Chinook spatio-temporal distribution models to generate indices of Chinook available to
302 

killer whales by area, year, and season (Pacific Fishery Management Council 2020).
303 

304 

We used 3 stock-specific and 4 area-specific Chinook indices (Pacific Fishery Management
305 

Council 2020). In this framework, estimates of Chinook are generated by season, corresponding
306 

to the seasons in the FRAM model (Oct – Apr, May – Jun, Jul - Sep). For all analyses, we used
307 

estimated starting abundances on July 1st of each year. SRKW are imaged in September each
308 

year, so this summer index of abundance provides the closest match to the true prey availability
309 

experienced by whales prior to condition measurements. Furthermore, condition at the time of
310 

measurement is unlikely to represent the availability of prey more than a few months prior, as
311 

SRKW condition is known to fluctuate seasonally, presumably in response to foraging
312 

opportunities (Fearnbach et al. 2018). We focused on 3 of the larger stock-specific indices
313 

(Fraser River, Columbia River, and Puget Sound), and included all modeled stock abundances
314 

originating from those tributaries (Table S2). The 4 area-specific indices we used were North of
315 

Cape Falcon (NOF), Oregon (OR), the Salish Sea (Salish), and Southwest Vancouver Island
316 

(SWVI) (Pacific Fishery Management Council 2020). These area-specific indices summed the
317 

model estimated abundances of all Chinook salmon from all index stocks that were estimated to
318 

be present.
319 
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320 

Transition probabilities within the model were related to the salmon index of the year that the
321 

whales were transitioning into. For example, the probability of growth (G) from condition class
322 

in September 2014 to condition class in September 2015 was linked to estimated Chinook
323 

abundance on July 1st of 2015. Given the observed differences in body condition trends between
324 

SRKW pods, we ran J, K, and L pods through the model separately, each with the same 7
325 

candidate covariates to identify potential relationships between each pod and various salmon
326 

indices. To determine whether there was support for the inclusion of covariates on transition
327 

probabilities, we also considered a null model (condition transition probabilities fixed across all
328 

years) and a time-only model (condition transition probabilities estimated independently each
329 

year with no covariate. Given the relatively small number of deaths that occurred during the
330 

study period, and previous studies that have assumed shared mortality probabilities across pods
331 

(Ward et al. 2013), we also ran null and time-only models for all pods combined to estimate
332 

population-wide mortality probabilities with body condition effects. For each model we ran 3
333 

chains of 100,000 iterations each, with a burn-in of 50,000 iterations and thinning of 50 for a
334 

total of 3,000 samples from the posterior distribution. We used non-informative uniform priors
335 

for all parameters (Mitchell and Beauchamp 1988), and confirmed model convergence using
336 

potential scale reduction factors (Gelman and Rubin 1992) (all parameters PSRF < 1.05) and
337 

visual inspection of chain convergence. 338 

339 

Model Selection340 

To identify which (if any) Chinook salmon covariates best predicted SRKW body condition
341 

transitions, we used a K-fold cross validation approach (Vehtari et al. 2017). There are many
342 

AR010577



 15

different ways to split training and test data sets for cross validation, depending on the goals of
343 

inference. Because our focus is on the temporal aspect, and in developing tools for making short
344 

term future predictions of body condition, we treated data from each year iteratively as a ‘fold’.
345 

For each pod and covariate combination, we ran the multistate condition transition model once
346 

with each year of observed condition data held out (n = 7 years), using the remaining years of
347 

observed condition data to fit the estimated condition transition probabilities and covariate
348 

relationships. We then calculated the expected log pointwise predictive density (ELPD) across
349 

all held out years of observed body conditions based on the conditions in the previous year and
350 

the model-estimated transition probabilities, following (Vehtari et al. 2017). We performed K-351 

fold Cross Validation for each of the pod and covariate combinations, as well as for each pod
352 

with the null and time-only models described above. In addition to the computing the ELPD for
353 

each model (models with the highest ELPD receive the highest data support), we calculated the
354 

standard error – which is useful in quantifying the uncertainty associated with model selection
355 

(Vehtari et al. 2017).
356 

357 

Results358 

In the 7 sampled years between 2008 and 2019, a total of 473 measurements of body condition
359 

were collected from 99 whales, which were used in our analyses. We recorded a median of 5
360 

years of body condition measurements for each whale (range 1-7). A total of 47 deaths and 33
361 

births were documented in SRKWs between 2008 and 2019, while a total of 29 deaths and 15
362 

births were documented in SRKWs during the same 7 years as the aerial photogrammetry
363 

sampling (Center for Whale Research 2020).
364 

365 
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In general. K-fold Cross Validation from our Bayesian models suggested that killer whale body
366 

condition is better predicted when salmon covariates are included, relative to models without
367 

salmon (J and L pods, Table S1). For models with salmon included, the standard errors of the
368 

ELPD values exceeded the difference in ELPD values among candidate models, which makes it
369 

challenging to confidently select one best-fit model. Consequently, we also report the second-370 

best fit model for each pod (Figures S1-S3). Due to the complexities of our model and the
371 

number of parameters, we present both the raw estimated transition probabilities, as well as
372 

aggregated Stable and Growth transition probabilities. This grouping represents a ‘Positive’
373 

transition group that may be more useful for managers targeted at preventing condition declines
374 

and maintaining stable or increasing condition.
375 

376 

Fraser River Chinook was the best predictor of J pod condition transitions (Figure 2, Table S1),
377 

although the ELPD values of the Salish Sea area-based Chinook abundance model fit (which
378 

includes a large proportion of the Fraser River stock) was almost identical. J Pod had a
379 

significant negative relationship between Fraser River Chinook abundance and the probability of
380 

declining condition (Decline), with 95.3% of posterior draws for the slope term in the cumulative
381 

logit regression < 0. There was no clear relationship between Fraser River Chinook abundance
382 

and the probability of increasing condition (Growth) (38.5% of posterior draws > 0), and while
383 

the probability of Stable condition appears to have a positive relationship with Fraser River
384 

Chinook, a slope term for S is not explicitly calculated in the cumulative logit regression.
385 

However, as the sum of the probabilities of Growth and Stable condition is equal to 1 minus the
386 

probability of Decline, we can infer that there is a positive relationship between Fraser River
387 

Chinook and Positive condition transitions (Growth or Stable condition) (Figure 2). When Fraser
388 
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River Chinook salmon abundance was above 750,000 fish, J pod whales had a greater than 0.86
389 

median probability of stable or increasing condition. That probability decreased at lower Fraser
390 

River Chinook abundance, to a minimum 0.37 median probability of increasing or stable
391 

condition when Fraser River Chinook abundance fell to 347,000 fish.
392 

393 

The best fit model for L pod included Chinook Salmon from Puget Sound, and nearly all models
394 

with salmon included outperformed the null models (Table S1). There was moderate support for
395 

a negative relationship between Puget Sound Chinook abundance and the probability of
396 

declining condition, with 88% of posterior draws for the slope < 0. Similar to the results for J
397 

pod, there was no clear relationship between this index of salmon abundance and the probability
398 

of increasing condition (56.9% of posterior draws > 0). Nevertheless, when Puget Sound
399 

Chinook abundance was above 399,000 fish during the study period, L pod whales had a 0.82 –
400 

0.89 median probability of stable or increasing condition. At the second-lowest Puget Sound
401 

Chinook abundance during the study period, 235,000 fish in 2015, L pod whales had a 0.32
402 

median probability of stable or increasing condition. The major deviation from the positive linear
403 

relationship between Puget Sound Chinook abundance and condition transitions occurred in
404 

2014, when Puget Sound Chinook was at its lowest point during the study period (208,000 fish),
405 

but L pod whales had a 0.60 median probability of stable or increasing condition. Apart from
406 

Puget Sound Chinook, all other models for L pod that included salmon covariates (both stock-407 

specific and area-based abundance) produced potentially spurious results, where higher salmon
408 

abundance was associated with declining condition (e.g. Figure S3).
409 

410 
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Unlike J and L pods, the best-fit model for K pod did not include salmon as a covariate, and
411 

transition probabilities were held constant across years. In this null model, the median fixed
412 

probability of increasing condition (Growth) was 0.40 (95% highest posterior density intervals
413 

[HPDIs]: 0.33 – 0.47). The median probability of Decline was 0.31 (0.25 – 0.37), and the median
414 

probability of Stable condition was 0.29 (0.21 – 0.38). The second best-fit model for K pod
415 

included Puget Sound Chinook abundance, however we note that this covariate relationship
416 

produced relatively constant condition transitions across years (Figure S2). Nevertheless, there
417 

was a significant positive relationship between Puget Sound Chinook abundance and the
418 

probability of increasing condition, with 94.93% of posterior draws for the slope > 0. There was
419 

no clear relationship between Puget Sound Chinook abundance and the probability of declining
420 

condition (22.6% of draws < 0), and the probability of stable condition decreased with increasing
421 

Chinook abundance (Figure S2). When Puget Sound Chinook abundance was above 399,000
422 

fish, K pod whales had a median 0.43 – 0.50 probability of increasing condition. In contrast,
423 

when Puget Sound Chinook abundance was at a low of 208,000, K pod whales had a median
424 

0.14 probability of increasing condition. However, the probability of the management-relevant
425 

combined Growth and Stable condition remained relatively constant across the study period
426 

(median 0.68 – 0.78 probability; Figure S2).
427 

428 

While observations of body condition provided a relatively large sample size for estimating
429 

transition probabilities, deaths were relatively uncommon during the 12-year study period.
430 

Consequently, we estimated the effects of age, sex and body condition on mortality probabilities
431 

by pooling all pods together and running models without covariates (null and time-only). There
432 

were 25 total deaths of whales that also had measurements of body condition in at least one year
433 
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during the study period (12 in J pod, 3 in K pod, and 10 in L pod). 15 of those deaths occurred in
434 

the time step immediately following a body condition measurement. With data from all pods
435 

combined, the null model had a higher ELPD score than the time only model (Table S1) and was
436 

therefore used for estimates of mortality probability. The median expected mortality probabilities
437 

for whales in each age/sex and body condition class are reported in Table 2. The expected
438 

mortality probability of whales in body condition class 1 was 2-3 times higher than other body
439 

condition classes (Figure 3, Table 2). Mortality probability decreased in condition class 2, was
440 

lowest in condition classes 3 and 4, and increased slightly in condition class 5 to levels similar to
441 

condition class 2. For example, based on the model estimates, a Young Female whale has
442 

expected mortality probabilities of: BC1 0.03 (0.009-0.081); BC2 0.014 (0.003-0.043); BC3
443 

0.009 (0.001-0.033); BC4 0.01 (0.001-0.033); BC5 0.017 (0.005-0.048). Of the whales that died
444 

during the study period, condition class 1 whales died soonest after their final condition
445 

measurement (mean 169 days), while the time between measurement and estimated death
446 

roughly increased with condition class: mean 456, 790, 572, and 905 days for classes 2-5,
447 

respectively (Figure 4).
448 

449 

Discussion450 

The Southern Resident killer whale population offers a unique study opportunity for individual-451 

based body condition monitoring, providing a robust framework that can be extended to other
452 

marine and terrestrial populations. Due to the small population size, intensive demographic
453 

monitoring, and known fates of virtually every individual, paired with annual photogrammetry
454 

measurements of most of the population, we were able to make direct estimates of the
455 

relationship between individual salmon stocks and SRKW condition, and relate condition to
456 
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survival probability. While small demographic fluctuations limit statistical power for identifying
457 

the influence of covariates such as prey abundance, aerial photogrammetry allows for more
458 

individuals to be sampled in each year and repeatedly sampled across years, increasing power to
459 

evaluate changes in body condition against possible drivers. In this case, we obtained more than
460 

ten times as many observations of body condition as observations of births and deaths in the
461 

seven years of data collection. While our time series of condition measurements was relatively
462 

short, we posit that with continued annual monitoring this method will provide sufficient
463 

statistical power for even finer scale investigations of prey availability and population status (e.g.
464 

at the individual stock level rather than tributary-level aggregates). Evaluating changes in body
465 

condition over time likely provides more insights into drivers of population health than simply
466 

comparing single measures of condition (e.g. annual population mean and variance) to potential
467 

covariates, given the ability of long-lived animals such as killer whales to live through
468 

bottlenecks in resource availability. In addition, there may be inherent differences in baseline
469 

condition between individuals, so evaluating individual changes between years rather than raw
470 

condition further accounts for individual variability.
471 

472 

Our cross-validation analyses suggest that, in the case of J and L pods, models including salmon
473 

covariates better predicted held-out years of body condition data than models without salmon
474 

covariates. Given that salmon managers use the FRAM model to generate pre-season estimates
475 

of Chinook abundance by stock, the modeling framework we present here could be used to
476 

generate predictions of fall SRKW body condition based on those salmon abundance estimates,
477 

quantify short-term risks to the population, and identify potential management interventions. Our
478 

model results suggest the strongest correlation between killer whale body condition and prey is
479 

AR010583



 21

between the SRKW J pod and Chinook salmon returning to the Fraser River. The Salish Sea
480 

area-based Chinook index was essentially tied for the best-fit J pod model, which is unsurprising
481 

considering the Salish Sea index is typically made up of 40-50% Fraser-origin Chinook. Over the
482 

last decade, when Fraser River Chinook abundance was above 750,000 (estimated FRAM
483 

Chinook model abundance on July 1st), J pod whales had a low chance (less than 14%) of
484 

declining body condition. Such a target could be used in a management setting to define
485 

thresholds supporting the stability and recovery of this population segment. For example,
486 

management actions focused on habitat restoration that ensures effective anadromous migration
487 

and productivity of Fraser River Chinook stocks could lead to gains in the nutritive condition of J
488 

pod whales. In the long-term, increasing urbanization of watersheds (Greene and Beechie 2004),
489 

increasing abundance of competing predators (Chasco et al. 2017), and climate change (Crozier
490 

et al. 2008) all present substantial threats to Fraser River Chinook abundance.
491 

492 

The only positive, ecologically plausible relationship we found for L pod body condition was
493 

with the Puget Sound stock-specific abundance index. This is surprising, given that L pod is
494 

rarely in Puget Sound in the summer and spends less time in adjacent inland waters during the
495 

summer months than J or K pods (Riera et al. 2019), and Puget Sound origin Chinook are
496 

generally smaller and less numerically dominant than other stocks (O’Neill et al. 2014, Pacific
497 

Fishery Management Council 2020). However, L pod spends more time during the summer
498 

months in the western strait of Juan de Fuca than J or K pods (Riera et al. 2019), and may be
499 

targeting Puget Sound Chinook as they migrate from their open ocean phase towards spawning
500 

tributaries. The somewhat unique oceanic distribution of Puget Sound Chinook along the west
501 

coast of Vancouver Island (Weitkamp 2010, Shelton et al. 2019) may provide a reliable prey
502 

AR010584



 22

base in areas or times when more dominant stocks (Columbia and Fraser rivers) are less
503 

abundant. The relationship between L pod body condition transitions and Puget Sound Chinook
504 

abundance was weaker than the relationship between J pod and Fraser River Chinook. It is
505 

possible that L pod targets Chinook from a variety of stocks as they enter the strait of Juan de
506 

Fuca, which could obscure the signal of the Puget Sound Chinook's influence on L pod body
507 

condition. However, L pod body condition was negatively correlated to all other stock-specific
508 

and area-based indices, including all Chinook salmon present in the Southwest Vancouver Island
509 

region, which presumably would be a better representation of Chinook availability at the mouth
510 

of the strait of Juan de Fuca. Previous analyses examining the influence of specific Chinook
511 

stocks on SRKW demographic rates found a significant relationship between SRKW fecundity
512 

and both Puget Sound and Fraser River Chinook abundance (Vélez-Espino et al. 2014), which
513 

further indicates the potential importance of these stocks to the SRKW population.
514 

515 

The best-fit model for K pod had fixed body condition transition probabilities across time and
516 

included no salmon covariate. K pod may forage on a diverse assemblage of prey that is not
517 

easily captured in either stock-specific or area-based indices of Chinook abundance. However,
518 

the second best-fit model for K pod included Puget Sound Chinook and suggested a positive
519 

relationship between Chinook abundance and the probability of increasing body condition.
520 

Additional studies of the fine scale distribution of Puget Sound Chinook along Vancouver Island
521 

and the Washington coast, and their representation in the diets of L and K pod whales during
522 

summer months could improve our understanding of the importance of this stock to SRKW
523 

population health. The major caveat to our findings is that body condition is known to fluctuate
524 

over a period of several months (Fearnbach et al. 2019). The three SRKW pods forage on other
525 
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salmon stocks in winter and spring months (Hanson et al. 2010), but the September body
526 

condition metrics, and therefore the results of our analyses, most likely reflect the effects of the
527 

summer foraging period in the Salish Sea.
528 

529 

In addition to demonstrating the link between salmon abundance and body condition of killer
530 

whales, our model results show that whales in poor condition are more likely to die. Our
531 

estimated baseline mortality rates of whales in different age and sex classes are generally in line
532 

with previous findings (Ward et al. 2013), with old males and females experiencing the highest
533 

mortality probabilities, and calves experiencing slightly elevated mortality probabilities
534 

compared to juveniles and young whales. Our model estimated somewhat higher mortality
535 

probabilities for old females, and lower for old males, calves, and juveniles than previous
536 

analyses (Ward et al. 2013). These small differences are most likely due to the shorter time series
537 

of deaths included in our study (2008-2019 versus 1979-2010) and the exclusion of whales that
538 

did not have body condition measurements, although we cannot rule out changes in mortality
539 

probability by age and sex class in recent years. Whales in condition class 1 had a mortality
540 

probability roughly 2-3 times higher than whales in condition classes 2-5. Interestingly,
541 

condition class 5 whales had a slightly elevated mortality probability similar to condition class 2
542 

whales. The two whales that were observed in condition class 5 at the time step immediately
543 

prior to death died 317 (L53) and 349 (J14) days after being imaged, and may have experienced
544 

a substantial, unrecorded decline in condition during that almost year-long period. Furthermore,
545 

while we did account for age and sex effects on mortality probability, there are other factors
546 

aside from age, sex, and nutritive condition that may contribute to mortality probabilities, such as
547 

the presence or condition of other whales in a matriline (Foster et al. 2012, Nattrass et al. 2019).
548 
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The majority of whales that died shortly after being imaged were in condition class 1 (very poor
549 

condition), while deaths of higher condition class whales typically occurred longer after their last
550 

measurement (Figure 4). This further supports the conclusion that whales in condition class 1
551 

have an elevated mortality probability and suggests that aerial photogrammetry measurements
552 

may be able to identify whales most at risk of death in the near future.
553 

554 

Interestingly, changes in condition for animals from J and L pod were best explained by Chinook
555 

indices that are negatively correlated with one another (Figure S4), while K pod condition was
556 

best explained by constant transition probabilities (or possibly Puget Sound Chinook, similar to
557 

L pod). Our findings suggest that the three pods behave very differently in terms of body
558 

condition fluctuations, which are likely driven by independent foraging strategies. Recent
559 

analyses of SRKW demographic data attempted to relate births and deaths to a wide range of
560 

Chinook salmon area-based indices (including several of the area-based indices used in this
561 

study), but found no significant relationships (Pacific Fishery Management Council 2020). Our
562 

results indicate that it may be advantageous for similar future analyses of demographic
563 

fluctuations to consider the three SRKW pods separately. Furthermore, given the differences in
564 

important prey indices reported here, it may be more effective for management strategies to treat
565 

the population of SRKWs as multiple management units, as the most effective management
566 

actions would likely be very different for each pod based on our findings.
567 

568 

In addition to identifying target prey abundance levels to support SRKW recovery, aerial
569 

photogrammetry can provide an early warning system that has the potential to serve as the basis
570 

for dynamic and adaptive management strategies. In an endangered population that had only 73
571 
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remaining individuals as of 2019, demographic casualties such as the death of a reproductive
572 

female or a year with no successful births can potentially have catastrophic consequences for
573 

population viability. Management actions that respond to these demographic casualties as
574 

opposed to preventing them may be insufficient to support population recovery. Our findings
575 

show that aerial photogrammetry can be used to identify at-risk individual whales, as well as to
576 

collect an overall metric of population health prior to mortality events that could be used to
577 

inform management actions. For example, if a large portion of the population is recorded in body
578 

condition class 1 during September (e.g. more than 20% of the population, or some threshold
579 

decided upon by managers), then fishery actions could be considered to increase prey availability
580 

for SRKW pods over the next year. Some actions that may result in an increase in Fraser
581 

Chinook abundances include spatio-temporal closures in areas of high Fraser Chinook encounter
582 

rates or mark-selective regulations, as a high proportion of the Fraser stock aggregate is
583 

unmarked. However, we note that the predicted fishing mortalities on Chinook are thought to be
584 

relatively low compared to the total cohort size (Pacific Fishery Management Council 2020) and
585 

that proactive strategies to increase Chinook abundance such as habitat restoration, reducing
586 

predator-related mortality, and increased production may provide the greatest benefit to overall
587 

Chinook abundance (Greene and Beechie 2004, Crozier et al. 2008, Chasco et al. 2017). These
588 

approaches could be implemented at the pod level where, for example, if individuals from K and
589 

L pods are in good condition while J pod individuals are in poor condition, management action
590 

could be taken to increase Fraser River Chinook availability over the coming year. These
591 

assessments of condition could be done in near-real time with a lag of less than 3 months, rapidly
592 

informing upcoming management strategies or allowing for interventions at the individual level.
593 

In addition to influencing survivorship, body condition is likely also tied to fecundity in killer
594 
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whales (Ward et al. 2009). Future work should examine the relationship between reproductive
595 

success in the SRKW population and observed body condition, which would allow for a full
596 

evaluation of the influence of individual condition on overall population viability and support
597 

further modeling and projection efforts to weigh the efficacy of candidate management
598 

strategies. In addition, monitoring body condition in other seasons could provide insights into
599 

prey populations that may be important to the SRKW population in winter and spring months.
600 

As the time series of condition measurements grows it may be possible to evaluate the
601 

relationship between SRKW condition and finer scale Chinook stock groupings and potentially
602 

other prey species.
603 

604 

It may not be possible to apply the approach used in this study to larger, wide ranging
605 

populations of marine mammals where repeated measurements of individuals and samples from
606 

a large portion of the population are not feasible. Instead, the average body condition of a
607 

random sample of the population may be achievable and, based on our findings, can likely serve
608 

as a proxy for short-term, relative population health. In addition, we posit that rapid changes in
609 

average body condition within a population can be used as an early-warning indicator of
610 

upcoming demographic fluctuations, given our findings that individuals in poor conditions have
611 

higher mortality probabilities. The use of body condition as an indicator of population health
612 

could be further tested in cetacean populations that have long-term photogrammetry datasets and
613 

experience substantial population fluctuations, such as eastern north Pacific gray whales
614 

(Perryman and Lynn 2002), validating its use as a preceding signal of demographic impacts and
615 

supporting the development of adaptive management strategies.
616 

617 
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Tables and Figures806 
807 

Table 1. Number of Southern Resident killer whales measured using aerial photogrammetry in
808 
September of each study year, and the percentage of each pod imaged in parentheses.
809 

810 

Year J Pod  K Pod  L Pod

2008 23 (92.0%) 18 (94.7%) 19 (46.3%)
2013 25 (96.2%) 18 (94.7%) 25 (67.6%)
2015 27 (100%) 19 (100%) 26 (74.3%)
2016 28 (96.6%) 19 (100%) 35 (100%)
2017 22 (91.7%) 9 (50.0%) 30 (85.7%)
2018 23 (100%) 18 (100%) 29 (85.3%)
2019 22 (100%) 17 (100%) 21 (61.8%)

811 
812 
813 

Table 2. Model-estimated mortality probabilities by body condition (BC) and age/sex class for
814 
Southern Resident killer whales. Reported values are median estimates with 95% highest
815 
posterior density intervals in parentheses.
816 

817 

Age/Sex Class BC 1 BC 2 BC 3 BC 4 BC 5

Calf

0.04  
(0.004-0.177) 

0.02  
(0.001-0.085) 

0.01  
(0.001-0.066) 

0.01  
(0.001-0.069) 

0.02 
(0.002-0.105)

Juvenile
0.02 
(0.003-0.060) 

0.01 
(0.001-0.030) 

0.01 
(0.000-0.025) 

0.01 
(0.000-0.025) 

0.01

(0.002-0.037)

Young Female
0.03 
(0.009-0.081) 

0.01 
(0.003-0.043) 

0.01 
(0.001-0.033) 

0.01 
(0.001-0.033) 

0.02

(0.005-0.048)

Old Female
0.23 
(0.069-0.595) 

0.12 
(0.026-0.348) 

0.08 
(0.010-0.261) 

0.09 
(0.011-0.274) 

0.14

(0.042-0.406)

Young Male
0.03 
(0.006-0.105) 

0.01 
(0.002-0.052) 

0.01 
(0.001-0.039) 

0.01 
(0.001-0.041) 

0.02

(0.003-0.062)

Old Male
0.16 
(0.047-0.432) 

0.08 
(0.018-0.231) 

0.05 
(0.006-0.171) 

0.06 
(0.007-0.173) 

0.09

(0.026-0.267)
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819 

820 
821 

Figure 1. Eye patch ratios by age and sex for Southern Resident killer whale individuals from all
822 
three pods during the study period. The top panel shows the measured eye patch ratio by
823 
age for males (blue) and females (orange). The spline fits for males (blue) and females
824 
(orange) were used to define body condition classes based on residuals, while a mean Eye
825 
patch ratio was used to calculate residuals for females aged 60+ that did not have reliable
826 
age estimates (see Methods) Vertical dashed lines delineate the age and sex classes used to
827 
estimate age- and sex-specific mortality probabilities. The series of images tracks the eye
828 
patch ratio (EPR) and body condition class (BC) of adult female J17 from 2015-2018,
829 
demonstrating the observed decline in condition preceding her death in summer 2019. The
830 
progression of J17’s eye patch ratios are highlighted in the top panel in larger, dark orange
831 
circles connected by lines. The orange horizontal lines in the far-left image show how the
832 
eye patch ratio is calculated (EP bottom divided by EP top), providing a metric of adipose
833 
fat behind the cranium as a proxy for nutritive condition.
834 
 835 
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836 

837 
838 

Figure 2. Body condition transition probabilities for Southern Resident killer whale J (a-d) and L
839 
(e-h) pods with best-fit Chinook salmon covariates (Fraser River and Puget Sound,
840 
respectively). The best-fit model for K pod did not include a covariate (see Results).
841 
Panels show the model-estimated relationships between Chinook salmon abundance and
842 
the probability of a Decline in body condition (a,e), and the combined probability of
843 
Growth or Stable body condition (b,f). The probability of Growth or Stable condition
844 
shown in b & f is the sum of the posterior distributions for the probability of Growth (c,g)
845 
and the probability of Stable condition (d,h). Put simply, b = c+d and f = g+h. Points and
846 
vertical bars represent the median estimated transition probability with 95% Highest
847 
Posterior Density Intervals. The light and dark shading represent the 95% and 50%
848 
HPDIs, respectively, of the model-estimated relationship between salmon covariates and
849 
transition probabilities, along with the median estimate of this fit (black line).
850 
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851 
Figure 3. Age/sex class- and condition-specific mortality probabilities for Southern Resident
852 

killer whales (all pods combined). Calf and Juvenile age classes include both sexes. Violin
853 
plots represent the posterior distributions of the effect of age/sex (top) or body condition
854 
(bottom) class on mortality probability. Inset boxplots represent the median (black
855 
horizontal bar), 50% HPDI (white box), and 95% HPDI (vertical black lines). Note that
856 
the effects are applied in logit space before transformation to proportional space. See
857 
Table 2 for expected mortality probabilities of each age/sex and body condition class
858 
combination.
859 

860 
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862 

863 
864 

Figure 4. Time between final condition measurement and estimated death for Southern Resident
865 
killer whales that died during the 2008-2019 study period. Each density plot represents the
866 
estimated number of days between when a whale was last measured and when it died,
867 
broken out by the condition class (BC1-5) that whales were last recorded as before death.
868 
Points represent the time between final measurement and death for individual whales,
869 
color coded by pod and jittered randomly on the y axis.
870 

871 
872 
873 
874 
875 
876 
877 
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Supplementary Information879 
880 

Table S1. K-fold Cross Validation model selection table. Expected log pointwise predictive
881 
density (ELPD) scores with standard errors for all candidate Chinook salmon abundance
882 
indices as well as null and time only models for each Southern Resident killer whale pod.
883 
Fraser River, Columbia River, and Puget Sound are stock-specific abundance indices,
884 
while North of Cape Falcon, Oregon coast, Salish Sea, and Southwest Vancouver Island
885 
are area-based Chinook abundance indices. The null model holds transition probabilities
886 
constant across years, while the time only model estimates independent annual transition
887 
probabilities without the inclusion of a covariate. Null and time only models were also run
888 
for all pods combined to estimate a joint mortality probability based on age, sex, and body
889 
condition effects.  (*) indicate the top two models based on ELPD scores for each pod.
890 
Bold values indicate the top model for each pod that is reported in the main text.
891 

892 
893 
894 

Covariate 

J Pod ELPD 

(SE) 

K Pod ELPD 

(SE) 

L Pod ELPD 

(SE) 

All Pods ELPD


(SE)

Fraser River -188.92 (13.12)* -106.11 (11.01) -182.7 (19.07) 

Columbia River -190.86 (12.82) -109.77 (11.58) -181.53 (19.4) 

Puget Sound -191.18 (12.52) -103.73 (10.39)* -178.66 (18.61)* 

North of Cape Falcon -194.47 (12.79) -111.36 (11.97) -179.22 (19.16)* 

Oregon Coast -192.44 (12.66) -108.57 (11.32) -179.57 (19.43) 

Salish Sea -188.94 (13.25)* -107.96 (10.95) -183.78 (19.17) 

Southwest Vancouver Is. -193.32 (12.94) -113.55 (12.79) -181.34 (18.96) 

Time Only -195.89 (12.42) -111.59 (12.38) -182.55 (19.09) -602.55 (32.66)

Null -190.42 (13.31) -102.18 (11.32)* -191.97 (24.24) -594.86 (31.79)
895 
896 
897 
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Table S2. Chinook salmon stock-specific designations. All summer and fall stocks originating
899 
within each tributary were aggregated into a single stock-specific abundance index. Each
900 
stock is associated with a FRAM Stock Number and Stock Name.
901 

902 
Present Study Stock Assignment FRAM Stock Number Stock Name

Columbia River 37 UnMarked CR Oregon Hatchery Tule

38 Marked CR Oregon Hatchery Tule

39 UnMarked CR Washington Hatchery Tule

40 Marked CR Washington Hatchery Tule

41 UnMarked Lower Columbia River Wild

42 Marked Lower Columbia River Wild

43 UnMarked CR Bonneville Pool Hatchery

44 Marked CR Bonneville Pool Hatchery

45 UnMarked Columbia R Upriver Summer

46 Marked Columbia R Upriver Summer

47 UnMarked Columbia R Upriver Bright

48 Marked Columbia R Upriver Bright

53 UnMarked Snake River Fall

54 Marked Snake River Fall

67 UnMarked Lower Columbia Naturals

Fraser River 59 UnMarked Fraser River Late

60 Marked Fraser River Late

61 UnMarked Fraser River Early

62 Marked Fraser River Early

Puget Sound 1 UnMarked Nooksack/Samish Fall

2 Marked Nooksack/Samish Fall

7 UnMarked Skagit Summer/Fall Fing

8 Marked Skagit Summer/Fall Fing

9 UnMarked Skagit Summer/Fall Year

13 UnMarked Snohomish Fall Fing

14 Marked Snohomish Fall Fing

15 UnMarked Snohomish Fall Year

16 Marked Snohomish Fall Year

17 UnMarked Stillaguamish Fall Fing

18 Marked Stillaguamish Fall Fing

19 UnMarked Tulalip Fall Fing

20 Marked Tulalip Fall Fing

21 UnMarked Mid PS Fall Fing

22 Marked Mid PS Fall Fing

23 UnMarked UW Accelerated

24 Marked UW Accelerated

25 UnMarked South Puget Sound Fall Fing

26 Marked South Puget Sound Fall Fing

27 UnMarked South Puget Sound Fall Year

28 Marked South Puget Sound Fall Year
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903 
Figure S1. Covariate relationships for Southern Resident killer whale J Pod & Salish Sea
904 

Chinook salmon (second best-fit model): Decline (D), Growth / Stable (G/S), Growth (G),
905 
Stable (S). Note that the probability of Growth or Stable condition in the top right panel is
906 
the sum of the posterior distributions of the probabilities of Growth (bottom left) and
907 
Stable condition (bottom right). Put simply, P(GS) = P(G) + P(S). Points and vertical bars
908 
represent the median estimated transition probability with 95% Highest Posterior Density
909 
Intervals, and the light and dark shading represent the 95% and 50% HPDI, respectively,
910 
of the model-estimated relationship between the Salish Sea Chinook abundance and
911 
transition probabilities, along with the median estimate of this fit (black line).
912 

913 
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915 

916 
Figure S2. Covariate relationships for Southern Resident killer whale K Pod & Puget Sound
917 

Chinook salmon (second best-fit model): Decline (D), Growth / Stable (G/S), Growth (G),
918 
Stable (S). Note that the probability of Growth or Stable condition in the top right panel is
919 
the sum of the posterior distributions of the probabilities of Growth (bottom left) and
920 
Stable condition (bottom right). Put simply, P(GS) = P(G) + P(S). Points and vertical bars
921 
represent the median estimated transition probability with 95% Highest Posterior Density
922 
Intervals, and the light and dark shading represent the 95% and 50% HPDI, respectively,
923 
of the model-estimated relationship between the Puget Sound Chinook abundance and
924 
transition probabilities, along with the median estimate of this fit (black line).
925 

926 
 927 
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928 

929 
Figure S3. Covariate relationships for Southern Resident killer whale K Pod & North of Cape
930 

Falcon (NOF) Chinook salmon (second best-fit model): Decline (D), Growth / Stable
931 
(G/S), Growth (G), Stable (S). Note that the probability of Growth or Stable condition in
932 
the top right panel is the sum of the posterior distributions of the probabilities of Growth
933 
(bottom left) and Stable condition (bottom right). Put simply, P(GS) = P(G) + P(S). Points
934 
and vertical bars represent the median estimated transition probability with 95% Highest
935 
Posterior Density Intervals, and the light and dark shading represent the 95% and 50%
936 
HPDI, respectively, of the model-estimated relationship between the NOF area-based
937 
Chinook abundance and transition probabilities, along with the median estimate of this fit
938 
(black line).
939 
 940 
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941 
942 

943 
944 

Figure S4. Chinook salmon abundances used as candidate covariates in the Southern Resident
945 
killer whale body condition transition models. The plotted abundance indices were
946 
generated by dividing the annual abundance for each stock by the mean abundance of that
947 
stock for years 2009-2019 in order to plot the salmon data on a common scale. The
948 
Columbia River, Fraser River, and Puget Sound are stock-specific abundance indices,
949 
while North of Cape Falcon (NOF), Oregon coast (OR), Salish Sea, and Southwest
950 
Vancouver Island (SWVI) are area-based Chinook abundance indices, representing total
951 
abundance of Chinook salmon from any stock within a specific region. See Methods for
952 
more details.
953 
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