
RESEARCH ARTICLE


Climate vulnerability assessment for Pacific

salmon and steelhead in the California

Current Large Marine Ecosystem


Lisa G. CrozierID 
1 
*, Michelle M. McClure1¤, Tim Beechie 1
, Steven J. Bograd2, David

A. Boughton3, MarkCarr4, Thomas D. Cooney1 , Jason B. Dunham5, Correigh M. Greene1 ,


Melissa A. Haltuch1 , Elliott L. Hazen2, Damon M. Holzer1 , David D. Huff1 , Rachel


C. Johnson3,6, Chris E. Jordan1 , Isaac C. Kaplan1 , Steven T. LindleyID 
3
, Nathan J. Mantua3,

PeterB. Moyle7, James M. Myers1 , MarkW. Nelson ID 
8 , Brian C. Spence 3
, Laurie

A. Weitkamp1 , Thomas H. Williams3, Ellen Willis-Norton4


1 Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric


Administration, Seattle, Washington, United States of America, 2 Southwest Fisheries Science Center,

National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, California,


United States of America, 3 Southwest Fisheries Science Center, National Marine Fisheries Service, National


Oceanic and Atmospheric Administration, Santa Cruz, California, United States of America, 4 Department of


Ecology and EvolutionaryBiology, University of California, Santa Cruz, California, United States of America,

5 Forest & Rangeland Ecosystem Science Center, U.S. Geological Survey, Corvallis, Oregon, United States


of America, 6 Center forWatershed Sciences, University of California, Davis, California, United States of

America, 7 Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California,


United States of America, 8 ECS Federal, Inc. UnderContract to Office of Sustainable Fisheries, National

Marine Fisheries Service, National Oceanic and Atmospheric Administration, SilverSpring, Maryland, United


States of America


¤ Current address: Pacific Marine Environmental Laboratory, Seattle, Washington, United States of


America


* lisa.crozier@noaa.gov


Abstract


Major ecological realignments are already occurring in response to climate change. To be


successful, conservation strategies nowneed to account for geographical patterns in traits


sensitive to climate change, as well as climate threats to species-level diversity. As part of


an effort to provide such information, we conducted a climate vulnerability assessment that


included all anadromous Pacific salmon and steelhead (Oncorhynchusspp.) population


units listed under the U.S. Endangered Species Act. Using an expert-based scoring system,


we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured bio-

logical sensitivity, or the strength of linkages between each listing unit and the present cli-

mate; climate exposure, or the magnitude of projected change in local environmental


conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new cli-

matic conditions. Each listing unit was then assigned one of four vulnerability categories.


Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Cen-

tral Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the


Snake RiverBasin, and spring-run Chinook in the interior Columbia and Willamette River


Basins. We identified units with similar vulnerability profiles using a hierarchical cluster anal-

ysis. Life history characteristics, especially freshwater and estuary residence times, inter-

played with gradations in exposure from south to north and from coastal to interior regions to
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generate landscape-level patterns within each species. Nearly all listing units faced high


exposures to projected increases in stream temperature, sea surface temperature, and


ocean acidification, but other aspects of exposure peaked in particular regions. Anthropo-

genic factors, especially migration barriers, habitat degradation, and hatchery influence,


have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing


adaptive capacity is essential to mitigate for the increasing threat of climate change. Collec-

tively, these results provide a framework to support recovery planning that considers climate


impacts on the majority of West Coast anadromous salmonids.


Introduction


Anthropogenic climate change poses a direct threat to existing global biodiversity. In fact, cli-

mate-related population extinctions have alreadyoccurred in 47% of976 plant and animal spe-

cies surveyed in a recent review ofthe literature [1]. Moreover, local extinction percentages are


higher in freshwater (74%) than in terrestrial (46%) or marine habitats (51%) [1]. Such impacts


are expected to increase in the future [2–4], and managers are actively seeking information


regarding the species or populations most vulnerable to climate change. Information ofthis


kind is needed to prioritize resources for restoration and climate adaptation efforts. Climate


vulnerability assessments are an important tool in these efforts because theyprovide systematic


summaries ofthe relative threat level to a set ofspecies or populations [5–7].


We conducted a comprehensive climate vulnerability assessment for Pacific salmon and


steelhead (Oncorhynchus spp.) in the U.S. portion ofthe California Current Large Marine Eco-

system (CCLME) and associated watersheds. Partly as a consequence ofnatal homing to


diverse watersheds, Pacific salmon display significant life historydiversity evolved through


local adaptation and limited dispersal [8]. In considering the conservation importance ofthis


diversity, NOAA Fisheries applied the concept ofevolutionarily significant units [9] to define


52 distinct population segments (DPSs) ofPacific salmon that could potentially be protected


under the US Endangered Species Act (ESA). Our analysis focuses primarily on those DPSs


that have been identified as species ofconcern, threatened or endangered (31/52). We also


included one chum (O. keta) and one pink (O. gorbuscha) non-listed DPS to represent these


species, which have fewor no listed DPSs. In total we compared the relative vulnerability of33


OncorhynchusDPSs in the CCLME.


Our assessment was based on three components ofvulnerability: 1) biological sensitivity,


which is a function ofindividual species characteristics; 2) climate exposure, which is a func-

tion ofgeographical location and projected future climate conditions; and 3) adaptive capacity,


which describes the ability ofa DPS to adapt to rapidly changing environmental conditions


[10]. Objectives were to characterize the relative degree ofthreat posed by each component of


vulnerability across DPSs and to describe landscape-level patterns in specific threats and


cumulative vulnerability at the DPS level.


Species units, spatial domains, and life histories


Pacific salmon are native to coastal regions ofnortheastern Asia (Japan, Korea and Russia) and


western North America from California to Alaska. Ofthe seven species ofOncorhynchus [11]


within the CCLME, we included the six that have primarily anadromous life histories: climate


change will profoundly impact both the freshwater and marine life stages for these species
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(Table 1). A seventh species, cutthroat trout (O. clarkii) has an anadromous component, but is


generally considered an inland species. Among the six species included in our analysis, there


are 52 DPSs occupying eight recovery domains (Fig 1), or ecoregions with distinct climatic


and ecological characteristics.


Table 1. Salmon and steelhead distinct population segments (DPSs) included in the assessment. Species names

are shown with number ofDPSs in parenthesis. Name, listing status, and recoverydomain is also shown for each DPS.


Species/distinct population segment name Listing status Recoverydomain


Steelhead O. mykiss (11)


Northern California steelhead Threatened North-Central California Coast


California Central Valley steelhead Threatened Central Valley


Central California Coast steelhead Threatened North-Central California Coast


South-Central California Coast steelhead Threatened S-Central/Southern CA Coast


Southern California Coast steelhead Endangered S-Central/Southern CA Coast


Puget Sound steelhead Threatened Puget Sound


Upper Columbia River steelhead Threatened Interior Columbia


Snake River Basin steelhead Threatened Interior Columbia


Middle Columbia River steelhead Threatened Interior Columbia


Upper Willamette River steelhead Threatened Willamette/-Lower Columbia


Lower Columbia River steelhead Threatened Willamette/-Lower Columbia


Chinook salmon O. tshawytscha (11)


Lower Columbia River Chinook Threatened Willamette/-Lower Columbia


Upper Willamette River Chinook Threatened Willamette/-Lower Columbia


Puget Sound Chinook Threatened Puget Sound


Snake River fall-run Chinook Threatened Interior Columbia


Snake River spring/summer-run Chinook Threatened Interior Columbia


Middle Columbia River spring-run Chinook Sensitive Interior Columbia


Upper Columbia River spring-run Chinook Endangered Interior Columbia


Central Valley fall/late fall-run Chinook Species ofconcern Central Valley


Central Valley spring-run Chinook Threatened Central Valley


Sacramento River winter-run Chinook Endangered Central Valley


California Coastal Chinook Threatened North-Central California Coast


Coho salmon O. kisutch (5)


Central California Coast coho Endangered North-Central California Coast


Southern Oregon/Northern California Coast coho Threatened Southern Oregon/Northern CA Coast


Oregon Coast coho Threatened Oregon Coast


Lower Columbia River coho Threatened Willamette/Lower Columbia


Puget Sound coho Species ofconcern Puget Sound


Chum salmon O. keta (3)


Columbia River chum Threatened Willamette/Lower Columbia


Puget Sound chum Not listed Puget Sound


Hood Canal summer-run chum Threatened Puget Sound


Sockeye salmon O. nerka (2)


Lake Ozette sockeye Threatened Puget Sound


Snake River sockeye Endangered Interior Columbia


Pink salmon O. gorbuscha (1)


Odd-year pink Not listed Puget Sound


 Middle Columbia spring-run Chinook are identified as sensitive byOregon


https://doi.org/10.1371/journal.pone.0217711 .t001
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Fig 1. Salmon recoverydomains. We analyzed patterns in vulnerability across DPSs within geographic recoverydomains used to manage West

Coast salmon and steelhead populations listed under the ESA [12]. The DPSs inhabiting each domain are listed in Table 1.


https://doi.org/10.1371/journal.pone.0217711 .g001
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At present, more than halfofall anadromous Pacific salmon and steelhead DPSs remaining


in the contiguous U.S. are threatened with extinction [13]. Suboptimal climate conditions


within the historical range ofclimate variability have been associated with detectable declines


in manyofthese DPSs, highlighting their sensitivities to climatic drivers [14–17]. In some


cases, the synergistic effects ofsuboptimal climate conditions and intense anthropogenic


stressors precipitated the population declines that led to these listing decisions.


There is tremendous life history diversity among and within Pacific salmon species (Fig 2)


[18, 19]. Anadromous species hatch in freshwater, migrate to the ocean to feed and grow, and


return to freshwater to spawn. Most adults die after spawning, although some steelhead (O.


mykiss) spawn successfully in multiple years. Juveniles can remain in freshwater anywhere


from days to years, with populations that spawn near the ocean typically having shorter fresh-

water phases [20].


The seasonal timing ofthe juvenile and adultmigrations varies across DPSs and species, as


does the extent to which this variation is associated with genetic differentiation [21, 22].


Within the CCLME, Chinook salmon (O. tshawytscha) and steelhead exhibit the greatest life-

stage variability. For example, some Chinook juveniles spend a full year in freshwater before


migrating as yearlings, whereas others enter the marine environment as subyearlings. Adults


ofdifferent life history types enter freshwater to commence the spawning migration in spring,


summer, fall, or winter, with maturation either in the ocean or in freshwater.


Salmon life histories are highly variable within the marine stage as well. In the CCLME,


pink salmon (O. gorbuscha) characteristically spend 1.5 years at sea, while coho (O. kisutch),


chum (O. keta), Chinook, sockeye (O. nerka), and steelhead mature at various ages, with some


males and hatcheryoffspring returning to freshwater within 1 year. Typically, adult coho


return after 1.5 years at sea, whereas the other salmon species spend 2-5 years in the ocean. O.


mykiss, O. nerka, and to a lesser extent other species have some populations or portions ofpop-

ulations that forego the marine migration altogether. Freshwater-resident populations, most


notably rainbow trout (O. mykiss) and kokanee (O. nerka) are generally not included in DPSs.


Anadromous salmonids exhibit a high degree ofhoming fidelity during the adultmigration,


which fosters local adaptation to conditions in a particular watershed. Differences in behavior,


body shape, thermal tolerance, and disease tolerance reflect genetic adaptations to characteris-

tic patterns in temperature and stream flow (e.g., [23–26]). Differences in environmental cues,


habitat conditions, and growth rates also trigger extensive life historyvariation among and


within populations, even in the absence ofgenetic differentiation (e.g., [27–29]). Many traits


appear to have responded to recent climate change, apparentlywithout genetic adaptation


[30]. However, to keep pace with climate change, genetic adaptation maybe necessary in the


long-run [31–33]; thus, maintaining genetic diversitywithin DPSs and species as a whole is a


high priority for salmon conservation [34].


Methods


Our approach followed the climate vulnerability assessment method developed byHare et al.


[35], which is nowbeing implemented for U.S. marine and anadromous species byNOAA


Fisheries [36]. This method was designed for rapid assessment across a wide variety oftaxa


using available qualitative and quantitative data. It assumes that vulnerabilitywill be periodi-

cally re-assessed, and methods refined as status reviews are updated and more information can


be considered for individual DPSs.


Hare et al. [35] had four components in their analysis: exposure, sensitivity, probability of


directional shift, and net direction ofclimate effects. Theyused exposure and sensitivity attri-

butes to calculate total vulnerability, while range shift and net climate effect scores provided
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supplemental information. Hare et al. [35] intentionally incorporated adaptive capacity attri-

butes into the sensitivity component. Nonetheless, they emphasized specific elements ofadap-

tive capacity that had special relevance by reporting separate scores for range shift and net


climate effect.


We used the same analytical structure as Hare et al. [35], butwith specific attributes tailored


to account for characteristics most relevant to individual life stages and habitats used by


salmon and steelhead. This approach allowed us to capture within-species differences at the


DPS level, or scale ofmanagement units presently used in salmon recoveryplanning.


We differentiated DPSs by exposure and sensitivitymetrics applied to each life stage. Expo-

sure attributes summarized the magnitude ofchange expected in climate variables with the


potential to affect species productivity in a specific region. Sensitivity attributes were based on


life history characteristics and proximity to climate thresholds (i.e., sensitivity to climate limits


was not assumed to be linear), as well as attributes associated with adaptive capacity, such as


population size and artificial breeding programs. We also developed a separate attribute for


Fig2. Schematic ofPacific salmon life histories for example ecotypes. Colors represent life stages, where yellow indicates adult freshwater migration and holding,

red spawning, orange incubation, light blue juvenile freshwater rearing and migration, green estuaryand nearshore rearing, and dark blue marine stage.


https://doi.org/10.1371/journal.pone.0217711 .g002
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adaptive capacity that focused on the perceived likelihood ofa phenotypic change that could


mitigate the effects ofclimate change. This separate adaptive capacity score was not included


in vulnerability ranks but provided additional information useful for conservation planning.


In the following sections, we describe the specific DPSs included in this assessment and the


attributes evaluated to determine relative vulnerability. We then detail the process ofcollecting


information on attributes, scoring each attribute, and ranking DPSs into low, moderate, high,


and veryhigh vulnerability categories. Finally, we describe additional analyses performed to


identifykeydrivers ofclimate vulnerability and their likely consequences for species-level


diversity ifthe most vulnerable DPSs are lost.


Spatial and biological scope


Our assessment included all 28 ESA-listed DPSs ofPacific salmon and steelhead in seven


recoverydomains (Table 1). Five ofthese DPSs are listed as endangered and 23 listed as threat-

ened [14, 16]. Two additional Chinook and one coho salmon DPSs are considered species of


concern byNOAA or sensitive species by state agencies. We also included Puget Sound pink


salmon, which combines even-year and odd-year DPSs, because no pink salmon are listed


under the ESA. We also analyzed Puget Sound chum salmon because this species has only 2


listed DPSs. Most remaining non-listed DPSs either lacked specific information that could


cause their score to differ from that ofa neighboring DPS (e.g., Washington Coast Chinook


salmon), or were hatchery-dominated to an extent that the effects ofclimate change will


depend more on hatcherymanagement than on the attributes included in our analysis. While


hatcherymanagement will also need to adjust to climate change [37], different metrics than


those evaluated here are needed to characterize vulnerability in hatchery stocks.


Sensitivity attributes


Attributes describing biological sensitivity to climate change included life-stage specific met-

rics that largely reflect the intrinsic biological characteristics and geographic range ofeach


DPS. These attributes also included population-level stressors that reduce natural resilience.


All biological sensitivity attributes except sensitivity to ocean acidification were modified from


species-level assessments [35], which would have produced the same score for all DPSs. Note


thatwe included exposure to ocean acidification as a separate attribute to characterize the


amount ofphysical change expected in the CCLME. Salmon generally occupy tributary, main-

stem, estuary, and marine habitats sequentially over their life cycle. Therefore, in assessing cli-

mate vulnerability, it is important to consider sensitivity at each life stage and corresponding


habitat. To standardize scoring across DPSs, we developed a rubric for each sensitivity attri-

bute (Table 2, S1 Appendix).


Life-stage sensitivity. We calculated habitat-specific sensitivity scores associated with five


stages ofthe salmon life cycle. These stages are seasonally and spatially defined, so the particu-

lar habitats occupied in each life stage are potentially affected bydifferent exposure attributes.


The early life history stage included egg incubation and fry emergence; the juvenile freshwater


stage encompassed the fry-to-smolt transition; and the estuary and marine stageswere distin-

guished physically by location. The adultfreshwater stage included freshwater entry, migra-

tion, holding, and spawning.


For each life stage, biological sensitivitywas scored from low to veryhigh based on the


extent ofpresent climate stress within the DPS habitat (S1–S8 Figs) and on the level ofhabitat


and behavioral diversitywithin the DPS. For a given life stage and DPS, sensitivitywas ranked


veryhigh ifhigh mortalityhad been directly linked to a climate driver in recent history. For


example, Sacramento River winter-run Chinook recently experienced high rates ofegg
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mortality due to warm water temperatures [38]. Ifbehavioral or habitat diversity allows a sub-

stantial portion ofthe population to avoid detrimental conditions in a given year, for example


by shifted phenology or habitat selection, then sensitivitywas ranked lower.


Table 2. Overviewofsensitivity and exposure attributes. We developed a rubric for each sensitivity and exposure

attribute to standardize scoring across DPSs. We included four freshwater and five marine exposure attributes, each

consideredwithin the habitat ofthe respective DPS and life stage. Full descriptions ofscoring criteria are included in

the S1 and S2 Appendices.


Attributes Lowvulnerability Veryhigh vulnerability


Sensitivity


Early life history Minimal flow& temperature stress in egg/ 
early fry stage


Flowor temperature stress alreadyapparent


Juvenile 
freshwater stage 

Flexible subyearling migration strategy Constrained yearling or stressed subyearling

migratory strategy


Estuary stage Short estuarine residence or wide window for 
migration timing 

Long estuary residence or climate-related

threats in the estuary stage already apparent


Marine stage Low correlation between marine survival & 
climate indicators, overlapping cohorts with 
variable age at return


High correlation between marine survival &

climate indicators; simple age structure


Adult freshwater 
stage 

Adult migration distance &duration short; 
low climate stress during migration, holding & 
spawning 

Adults encounter peak summer

temperatures or flow constraints during

migration, holding, or spawning


Cumulative life- 
cycle effects 

Low risk ofloss for defining characteristic of 
DPS or link between life stages 

Imminent climate threshold or life history

type alreadyat risk


Hatchery 
influence 

No hatchery-origin populations released 
within DPS boundaries 

Production hatcheries dominate naturally

spawning populations


Other stressors Non-climate threats are relativelyminor Multiple threat categories severe relative to

other DPSs


Population 
viability 

Extinction risk lowbased on viable salmon 
population criteria 

Extinction risk high based on viable salmon

population criteria


Ocean 
acidification 
sensitivity


Non-specialist on prey highly sensitive to 
ocean acidification


The DPS is a sensitive taxon, see text


Freshwater exposure


Stream 
temperature 

Z-score in Augustmean stream temperature of 
spawning, rearing, and migration 
habitats < 0.5


Z-score for August mean stream temperature

exceeds 2


Summer water 
deficit 

Z-score for water balance in summer 
freshwater habitat < 0.5


Z-score for water deficit exceeds 2


Flooding Relatively small change projected or freshwater 
habitat not influenced by floods 

Large change in flood events with potentially

severe habitat effects expected


Hydrologic regime Expected regime change in < 5% ofspawning 
area 

Expected regime change in > 25% of

spawning area


Marine exposure


Sea level rise Sea level rise minimal (projection range 
includes 0)


Sea level rise > global average


Sea surface 
temperature


Z-score in the ocean migration area < 0.5 Z-score in the ocean habitat exceeds 2


Ocean 
acidification

exposure


Z-score for pH in ocean range < 0.5 Z-score for ocean pH exceeds 2


Upwelling Little projected change in intensity or 
phenologyofupwelling-favorable winds 

Significant projected change in intensity or

phenology ofupwelling-favorable winds


Ocean currents Large-scale ocean circulation patterns affecting 
the northern CCLME are projected to change 
relatively little


Major changes in ocean circulation are

projected


https://doi.org/10.1371/journal.pone.0217711 .t002
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We also included an attribute for cumulative life-cycle effects to reflect the necessity of


completing all stages and maintaining a life historypattern characteristic ofthe DPS. This


attribute accounted for the possibility that individuals might avoid a climate stressor during a


given life stage at a cost to subsequent stages. For example, earlier migration in the juvenile


freshwater stage could increase survival to ocean entry but decrease survival during the marine


stage because ofsmaller body size or a mismatch between prey abundance and ocean-entry


timing. The cumulative life-cycle effects attribute also captured any expert judgment that a


given life stage was at such critical risk that reduction in survival at that stage would threaten


the entire life cycle or an essential characteristic ofthe DPS (e.g., anadromy).


Sensitivity to ocean acidification. Salmon sensitivity to ocean acidification most likely


occurs through ecological mechanisms mediated by changes to the food web [39–41]. Taxa


directly affected bydeclining marine pH include invertebrates such as pteropods, crabs, and


krill, which play a significant role in some salmon diets [42]. Physiological effects ofacidifica-

tion mayalso impair olfaction, which could hinder homing ability [43], along with other devel-

opmental effects [44]. Using the criteria ofMorrison et al. [45] for scoring, all salmon had low-

to-moderate sensitivity to ocean acidification. Slight differences among DPSs stemmed from


marine diet: sockeye, chum, and pink salmon consume more zooplankton than Chinook,


coho and steelhead, which are mostlypiscivorous.


Population viability. Scores for population viabilitywere based on indices ofextinction


risk, as evaluated in recent ESA status reviews and viability assessments [14, 16]. As part of


each status review, all listed salmon were formally evaluated with respect to 1) present vs. his-

torical population abundance; 2) population growth rate; 3) spatial structure, or the distribu-

tion ofpopulations within a DPS; and 4) genetic and phenotypic diversity [34]. For DPSs not


included in status reviews, we asked experts to apply these same criteria to the greatest extent


possible, given the information available. These population viability criteria were developed by


NOAA Fisheries to monitor long-term evolutionary potential [34], and therefore they relate to


adaptive capacity. More specifically, evolutionarypotential is strongly related to genetic vari-

ability and the risk ofdemographic extinction, both ofwhich are correlated with population


size [33, 46] and growth rate [47].


Hatchery influence. Numerous hatcheries release artificially propagated juvenile salmon


into freshwater, estuary, or marine habitats to supplement natural production. After complet-

ing the ocean stage, these hatchery-origin fish generally return to tributaries concurrentlywith


natural-origin salmon. Unless they are harvested or collected for broodstock or removal,


hatchery-origin fish spawn in natural habitat.


Hatcheries mayhave mixed effects on the resilience ofnatural populations to climate


change. In the best-case scenario, hatcheries provide a temporarydemographic buffer for cata-

strophic declines in abundance [48]. However, hatchery populations could eventually be more


susceptible to large-scale climate forcing than natural populations due to the absence ofbehav-

ioral, physiological, and genetic adaptation in the wild [15, 49]. Although some hatcheries fol-

low careful genetic protocols to minimize loss ofgenetic variation, many reduce the effective


size ofwild populations in proportion to their relative abundance [50–52], which reduces


adaptive capacity. In this assessment, we assumed that conservation hatcheries practicing best-

management procedures and high-qualitymonitoring posed lower risks to DPSs than produc-

tion hatcheries. Thus we ranked no hatchery influence as lowvulnerability, influence from


conservation hatcheries as moderate, and influence from production hatcheries as high or very


high, depending on the proportion ofnatural-origin adults spawning in streams across the


DPS.


Other stressors. Salmon populations are affected bynumerous stressors not directly


related to climate but that potentially reduce their ability to cope with climate change. The
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most common ofthese are habitat loss, habitat degradation, toxic chemicals, pathogens


endemic to fish culture, displacement by invasive species through competition and predation,


and harvest. All DPSs have experienced habitat loss and degradation along with recent changes


in ecosystem composition. The highest scores for this attribute were reserved for the most


severe cases, in which DPSs were subjected to a combination ofmultiple stressors.


Primary factors leading to past declines ofwild salmon populations have included migra-

tion barriers, overfishing, habitat loss and degradation, and negative effects from hatcherypro-

duction, which are captured in the hatchery influence attribute [53]. Although some ofthese


stressors are now less severe than in the past (especially overfishing), they continue to affect


population status in all DPSs, and are often exacerbated by climate stressors [54, 55]. We refer


to population viability, hatchery influence, and other stressors as extrinsic factors, because they


are imposed extrinsically byhuman activity.


Exposure attributes


Climate exposure attributes were used to describe the magnitude ofprojected change in the


physical environment bymid-century. Projected climate change was based on the "business-

as-usual" trajectory ofgreenhouse gas emissions, relative concentration pathway8.5 [2]. It is


important to note that our scores for climate exposure reflected physical change relative to a


historical reference period but did not assess whether these conditions were stressful for


salmon. Thus, some locations that are already extremely arid or hotmaybe onlymarginally


suitable for salmon, yet did not score high in the exposure component iftheywere not


expected to change much. Proximity to environmental thresholds was captured in the biologi-

cal sensitivity rather than the exposure attributes.


We included four freshwater and five marine exposure attributes (Table 2), and each attri-

bute was considered within the habitat ofthe respective DPS and life stage. For freshwater


attributes, we quantified the amount ofchange projected to occur in the spawning and rearing


habitat and in migration corridors delineated for each DPS in the StreamNetdata repository


[56] (S1–S8 Figs, S1 Table). Scores for marine exposure considered the ocean migration pat-

terns ofthe respective DPSs (e.g., [57–59]).


Freshwater attributes. Temperature and flowpatterns affect all aspects ofsalmon behav-

ior and physiology in freshwater, often with consequences for the marine life stage as well.


Freshwater exposure attributes and scoring criteria are summarized in Table 2, and the specific


rationale for each exposure metric is detailed in the S2 Appendix.


Briefly, we summarized temperature change by focusing on summer, when lethal tempera-

tures often occur (14–25˚C, depending on life stage) [60–62]. Summer low flows and drought


reduce available wetted habitat and can sever connections between habitat areas, causing mor-

tality from stranding; during these periods, water quality in remaining habitats is reduced.


Low summer flows and warmer temperatures often work together in altering prey composi-

tion, riparian vegetation, and stream morphology.


Conversely, high flows can have positive or negative effects, depending on life stage, season,


and watershed characteristics such as connected vs. disconnected floodplains and side chan-

nels. For example, migrating smolts generally benefit from higher flows, whereas eggs and fry


exposed to higher flows can be scoured from their nests, inundated by sedimentation, or


flushed out ofpreferred habitat especially in areas where floodplain connections have been lost


or impaired. Maximum flows can result either from large precipitation events, melting ofaccu-

mulated snow, or a combination ofboth.


We selected four metrics to capture projected change in these environmental drivers:


Augustmean stream temperature, mean summerwaterdeficit, extreme precipitation or
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floodingevents, and change in hydrologic regime, which is determined by the ratio ofrain to


snow in winter precipitation.


To describe change in summer stream conditions, we used modeled stream temperatures


[63, 64] and the evapotranspiration differential (potential minus actual), also known as the


summerwaterdeficit [65]. The latter attribute served as a proxy for low flows and drought


stress on riparian vegetation. For both attributes, conditions within the spawning and rearing


habitat projected for 2030–2059 were standardized statistically (z-score transformed) using


means and standard deviations ofthe reference periods (1993–2011 for stream temperature


and 1916–2006 for summerwater deficit). The reference period for stream temperature is


much more recent than the other metrics simplybecause long-term historical records are


extremely rare. However, given the strong correlation between stream and air temperature


[63] and the trends in longer historical records ofair temperature, a longer reference period


would onlyhave increased the projected change. Because the standardized rates ofchange for


this metric were often in our highest category (z > 2), a longer reference period would likely


have had a minimal impact on our conclusions.


Changes in the magnitude ofpeak flows have been modeled directly for most northern


streams [66], but were evaluated byproxy in California and coastal Oregon based on changes


in the frequency and intensity ofheavy rain events [67]. In western North America, the most


extreme rain events stem from narrow corridors ofwater vapor called atmospheric rivers,


which carrymoisture over thousands ofkilometers ofocean from the tropical mid-Pacific. We


focused on changes in extreme events, represented by the 99th percentile in precipitation or


flooding. Both analyses used 1970–1999 as the historical period, but the projection period for


atmospheric rivers was 2070–2099, whereas the projection period for floodingwas 2040–2069.


Changes in extreme events were not amenable to z-score transformation; hence peak flow


exposures were left as a rawpercent change for experts to rank from low to veryhigh.


Hydrologic regime reflects the annual pattern offlows and whether they are primarily driven


by rainfall, snowmelt, or groundwater. This attribute was designed to provide a holistic


description ofthe watershed characteristics most often correlated with salmon life history


traits, and hence those directly relevant to potential loss ofdiversity [68, 69]. Peak flows occur


during fall or winter in rain-dominated basins and during spring or early summer in snow-

dominated basins. Groundwater-dominated basins are relatively insensitive to either rainfall


or snowmelt.


As temperatures warm, the seasonal transition from rainfall to snowfall begins later in the


year, producing higher flows in earlywinter and shrinking cumulative snowpack. Spring/sum-

mer snowmelt is also expected to begin earlier in most basins, causing earlier and smaller


spring freshets with lower minimum flows in late summer. We characterized projected change


in these flow characteristics byquantifying hydrologic regime change in areas within and


upstream from spawning and rearing habitat. For scoring, we used threshold criteria defined


byHamlet et al. [70] and most recentlymodeled byLittell et al. [65]. Any change from snow-

dominant to transitional or from transitional to rain-dominant regimes increased the hydro-

logic regime score.


Marine attributes. Ocean conditions are a major driver ofsalmon abundance. Marine


survival tends to be correlated across stocks and species in the northeast Pacific, generally fol-

lowing patterns in sea surface temperature (SST) and large-scale climate indices [71–73].


Ocean distributions ofsalmon species are strongly correlated with SST [74–76], and various


climate indices associated with salmon survival are related to or derived from this attribute.


These include the Pacific Decadal Oscillation [77], North Pacific Gyre Oscillation, and various


ElNiño-Southern Oscillation indices [78]. Each ofthese indices reflect large-scale patterns of


variation in multiple ocean characteristics such as horizontal currents, upper ocean
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temperature and stratification, upwelling, and vertical mixing between deep and surface waters


[79–81].


In contrast, future warming trends in the north Pacific Ocean are projected to be domi-

nated by thermal forcing associated with increased greenhouse gas concentrations and the


thermodynamic feedbacks they trigger [82]. Furthermore, the relative importance oflarge-

scale climate indices for salmon tends to change over time [78], making it difficult to deter-

mine which indexwill be most applicable in the future. For these reasons, we elected to focus


on SST itselfas the exposure factor.


In addition to climate indices, historical variations in west coast salmon marine survival


have been associated with the strength ofocean currents that alter the proportion ofprey from


cold, subarctic waters [71, 72, 83–87]. Upwellingalso impacts salmon prey composition and is


adefining feature ofthe CCLME; thus, the strength and timing ofupwelling-favorable winds


was included as an exposure attribute. Upwelling intensity is tightly correlated with input and


retention ofcold, nutrient-rich waters to the euphotic zone, which promote high levels ofpri-

maryproductivity and a lipid-rich food-web in the CCLME [81, 88, 89].


Sea level risewas included as an exposure attribute because many salmon rear in estuaries


for months before they complete the transition to marine life stages. For these fish, transitional


estuarine rearing periods strongly influence later survival. Sea level rise will alter estuary and


nearshore habitats, likely intensifying the impact ofhigh tides, storms, and floods [90]. Sea


level rise will also alter estuarine hydrodynamics, with additional implications for salmon habi-

tat quality and abundance [91]. Sea level rise is associated with a net loss ofestuaryhabitat for


juvenile salmon in some assessments; [92] however, estuarydynamics are complicated, espe-

cially in terms ofsand-bar formation and breaching, and we lacked detailed models with


which to project these processes. We therefore differentiated DPSs by their relative rates ofsea


level rise at ocean entry, assuming a higher rate was more detrimental.


Finally, pH levels in the CCLME have been declining, resulting in reduced abundance and


increased corrosion in the shells ofcalcifying organisms [93–95]. Negative effects oflower pH


have been shown for many taxa in the CCLME [41], although the cumulative effects ofexpo-

sure to ocean acidification on salmon are still uncertain.


We examined a total offive attributes reflecting ocean conditions: sea surface temperature


(SST), ocean acidification (OA), sea level rise, timing and intensity ofupwelling, and change in


ocean currents. For SST and OA, we calculated standardized change in grid cells of1˚ latitude


by1˚ longitude based on output from 27 (SST) and 11 (OA) earth system models downloaded


from the NOAA Ocean Climate Change Web Portal [96]. In each grid cell, we calculated the


magnitude ofchange as the difference between mean climate projected for 2006-2055 and


mean climate from historical simulations during 1955–2005. We normalized the projected


change for these exposure attributes bydividing by the historical standard deviation (z-score),


then taking the average ofz-scores across grid cells within the migratory range ofthe DPS. We


calculated the mean magnitude ofchange at both annual and seasonal time steps to account


for seasonal variation. Scorers determined the most relevant season and location for individual


DPSs.


For exposure to sea level rise, we based scores primarily on analyses conducted by the


National Research Council [97] on sea levels projected for the U.S. West Coast in the 2050s.


This report projected the highest rates ofsea level rise at latitudes south ofCape Mendocino,


California, with slower increases at higher latitudes (scoring bins detailed in the S2 Appendix).


Projections ofchange in the timing and intensity ofupwellingconstitute an active area of


research, but consensus across studies is weak. Our upwelling scores relied primarily on the


analyses ofRykaczewski et al. [98]. They compiled output from 21 GCMs for the period 2071-

2100 under the representative concentration pathway 8.5 scenario. They then compared
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projected oceanic and atmospheric metrics to those from the early industrial period of1861-

1890. Their results can be summarized as a slight “poleward shift” in the seasonal climatologi-

cal cycle, wherein the average intensity ofupwelling increases in the northern and decreases in


the central and southern CCLME, and upwelling begins earlier in the year from central Cali-

fornia through central Oregon.


Our S2 Appendix, Exposure attributes, describes the present state ofthe literature regarding


potential change in ocean currents [99–102]. Ultimately, net projections were considered


highlyuncertain. However, our scoring method explicitly accounted for this type ofuncer-

tainty, as explained below (Scoringprocess). Reference and projection periods varied for differ-

ent exposure metrics, depending on the available information. Experts used qualitative


judgements ranging from low to veryhigh to account for these differences.


Adaptive capacity


The Intergovernmental Panel on Climate Change defined adaptive capacity as the potential for


a system to respond to environmental change bygenetic adaptation or by a non-genetic, phe-

notypic change that mitigates negative environmental impacts (Working Group II Report 2,


Table 18.5 in [2]). Adaptive capacity can be characterized in various ways, including genetic


richness, life history plasticity, and dispersal ability [6, 103, 104]. Additional work is needed to


explore the consequences ofdifferent methods used to characterize adaptive capacity.


Although differing methods can produce different rank orders in vulnerability, there is no


consensus on which methodological approach can best predict responses to climate change


[105–107].


Several aspects ofadaptive capacitywere included in our sensitivity attributes. High scores


in extrinsic factors reflected lower available levels ofgenetic and habitat diversity to cope with


climate change [108]. For example, genetic variation is reduced in small populations, simpli-

fied habitats, and populations heavily influenced byhatcheries [109, 110]. Furthermore, fish


altered by artificial selection in breeding programs may introduce maladaptive genotypes into


wild populations, and these maypotentially swamp genotypes that have evolved through natu-

ral selection [111]. Thus the attributes ofother stressors, population status, and hatchery influ-

ence were intended as proxies for evolutionary potential to some extent. Furthermore, the life


cycle complexity score addressed the likelihood that a present life historywould continue to be


viable in future climates, and thus whether phenotypic change would be needed to cope with


climate change.


In defining a separate attribute for adaptive capacity, we sought an index ofwhether change


in a phenotypic trait was considered likely. For example, ifa given life history trait appeared


optimal in a future climate, did scorers believe the DPS was likely to change adaptively toward


this trait? For this attribute, we included behavioral, physiological, and morphological traits. It


was not possible to quantify the extent to which change in relevant traits would result from


plastic vs. evolutionary processes because many traits were both highly plastic and heritable.


Thus, an initial adaptive capacity trait response would likely be plastic butwould be subject to


selection over time.


Rates ofevolutionary response depend on the full genetic architecture ofall traits under


selection, especially their correlation structure, temporal pattern ofthe selection gradient at


different life stages, and existing genetic variation within the optimal phenotype [47, 112, 113].


None ofthese elements are known at present, making adaptive capacity scores more subjective


than those ofother attributes. Nonetheless, changes in key traits have important management


implications, especially those that define characteristics ofa DPS, such as smolt or adult run-

timing, anadromy, or spatial distribution. We therefore asked scorers to evaluate the likelihood
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that a trait alteration could mitigate negative effects ofclimate change and to allocate four tal-

lies to low, moderate, or high bins.


Movement or dispersal is an important component ofadaptive capacity [104]. We focused


on shifts in range or habitat usage within existing geographic boundaries and accessible habi-

tats, although other types ofrange shift are possible. Salmon DPSs are defined in terms oftheir


watershed boundaries, so dispersal ofa DPS outside its existing freshwater domain would


likely involve colonization ofhabitat occupied by another DPS, and we did not address this


possibility. Shifts in salmon marine distributions have been projected based on associations


with SST [74–76]; however, these projections are not available at the DPS scale. Moreover,


they are based largely on Canadian and Alaskan salmon, which have migratory constraints


that differ from those ofDPSs included in our assessment. For these reasons, we did not


attempt to quantifymarine range shifts for the adaptive capacity attribute.


Overall, the adaptive capacity score was intended to capture perceived potential for behav-

ioral, physiological, or other adaptive response to ameliorate climate stress. We assumed that


experts would be familiar with a range ofpossible responses based on their knowledge ofdiver-

sity across DPSs. Adaptive capacity scores spanned three levels (low, moderate, or high). If


adaptation in a critically threatened life stage was deemed unlikely, the DPS received a low


score. A moderate score indicated that some adaptive response might occur, although not in


the most sensitive or exposed life stage, or that its magnitude might be fairly small. A high


score indicated that some adaptive shift was likely in response to climate change. These scores


were not formally integrated into relative vulnerability rankings; theyprovide additional infor-

mation to help develop management strategies that support a range oflife history expressions.


Data quality


A crucial component ofanyvulnerability assessment is the quality and specificity ofinforma-

tion on which it is based. We characterized data quality for each sensitivity and exposure attri-

bute based on the type ofdata used. We scored each data quality attribute from 0, representing


qualitative expert judgement alone, to 3, representing quantitative studies focused on the spe-

cific DPS being evaluated. When quantitative studies were available, data-quality scores


reflected the breadth ofanalyses synthesized, for example, the number ofGCMs included in


an ensemble projection or the number ofstudies documenting a given relationship, as well as


the extent ofagreement across studies. A score of3 indicated broad agreement over a relatively


large number ofGCMs or studies focused specifically on the DPS region or on populations


within the DPS [45].


Scoring process


We collected information on exposure attributes for the entire CCLME and associated water-

sheds and conducted a scoring workshop wherein experts discussed data-quality scores for


each exposure attribute. For each sensitivity attribute, profilers, or scientists familiar with an


individual DPS, wrote a description ofeach life stage, the seasonality, duration and known cli-

mate stressors at that stage, and variabilitywithin that life stage across the DPS. Behavior and


habitat information has been summarized for each DPS in the NOAA Fisheries biological sta-

tus reviews and their respective 5-year updates. However, this information is often focused on


particular populations, tributaries, or time periods, and therefore maynot necessarily repre-

sent the entire DPS [114]. Additional literature was cited in manyofthe DPS profiles, and pro-

filers also assigned a data-quality score for each sensitivity attribute.


Once all ofthe required information was collated, a separate panel of16 expert scorers rated


all freshwater and marine exposure, biological sensitivity, and adaptive capacity attributes
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based on the guidelines summarized in Table 2 and detailed in the S1 and S2 Appendices.


Each DPS was scored by four experts, with each expert scoring 5–22 salmon and steelhead


DPSs, plus other species included in the West Coast Fish Climate VulnerabilityAssessment.


To ensure consistency across groups ofDPSs, scoring groups were rearranged over several ses-

sions. Each expert independently scored their assigned DPSs based on information contained


in the profiles as well as their general knowledge, using the pre-defined scoring bins shown in


Table 2 and detailed in the S1 and S2 Appendices.


Each scorer allocated five tallies across four bins (low, moderate, high, or veryhigh) for


each sensitivity and exposure attribute as described in Morrison et al. [45]. Adaptive capacity


was scored by allocating four tallies across three bins (low, moderate, or high). Following pre-

liminary scoring, all experts participated in a second workshop discussion to ensure that com-

mon definitions were applied and that all scorers were aware ofDPS or location-specific


factors affecting vulnerability. Final scores were then submitted.


The bins were assigned a numerical value (low= 1, moderate = 2, high = 3, veryhigh = 4)


to calculate a weighted-mean attribute score. The number oftallies in a bin served as the


weighting factor. A greater spread oftallies among bins reflected greater uncertainty in scores


and was captured by the standard deviation ofthe mean score for each attribute.


Vulnerability categories


We calculated climate vulnerability for eachDPS from its attribute scores in three steps [45]. First,


we calculated the weighted mean oftallies for each sensitivityand exposure attribute. Second, we


applied a logic model to determine cumulative sensitivityand exposure component ranks from


their constituent attributes (Table 3). Rankings from the logic model depended on the number of


attribute means that exceeded a specified threshold. For example, ifat least two attributes in one


component had amean score equal to or above 3.5, that componentwas ranked veryhigh.


Sensitivity and exposure component ranks were then assigned a numerical value (very


high = 4, high = 3, moderate = 2, low= 1), which was used in the final step. Overall vulnerabil-

itywas determined bymultiplying the numeric values for sensitivity and exposure and assign-

ing a total score for each DPS based on the product (Table 3).


We used a bootstrap analysis to characterize uncertainty in the assignment ofa climate vul-

nerability category [45]. The 20 tallies for each attribute (four scorers per DPS with five tallies


Table 3. Logic rule for ranking sensitivityand exposure components and cumulative vulnerability. We used the

logic rule across attributes to assign a numeric score and vulnerability category to sensitivity and exposure components

(top section). We then used the product ofthe numeric component scores to assign cumulative vulnerability for each

DPS (bottom section).


Overall sensitivity or exposure 
score 

Numeric 
score


Logic rule


VeryHigh 4 More than 3 attribute means  3.5


High 3 More than 2 attribute means  3


Moderate 2 More than 2 attribute means  2.5


Low 1 All other scores


Cumulative 
vulnerability 

Component 
product


Component combinations


VeryHigh 12 Veryhigh/high or Veryhigh/very high


High 8-11 Veryhigh/moderate or High/high


Moderate 4-6 Veryhigh/low, High/moderate, or Moderate/

moderate


Low  3 High/low, Moderate/low, or Low/low


https://doi.org/10.1371/journal.pone.0217711 .t003
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each) were randomly sampled with replacement 1,000 times. From the resampled tallies, we


calculated new climate vulnerability attribute means and final vulnerability categories using


the three steps described above.


Ifthe bootstrap outcome matched the original vulnerability category at least 75% ofthe


time, we considered the score for thatDPS to be likely. When 25% or more ofthe bootstrapped


outcomes were either above or below the original climate vulnerability category, we considered


the DPS to be borderline between the original and secondaryvulnerability categories. Individ-

ual bootstrap results are shown in the S3 Appendix.


Vulnerability profiles


To explore which attributes were most important in determining overall vulnerability and


how specific threats varied across DPSs, we conducted a hierarchical cluster analysis on the


full suite ofmean scores for all attributes, implemented in the R “cluster” package [115]. These


clusters helped visualize differences in specific threats over broad geographical and biological


gradients. To group similar DPSs, we applied the Ward’s minimum variance algorithm and a


Euclidean distance measure. We cut the resulting dendrogram into six groups. We then used a


classification and regression tree analysis implemented in the R “tree” package [116] to identify


which attributes best predicted cluster assignments.


We characterized vulnerability profiles for each cluster by computing the average score for


each attribute across DPSs within each cluster. To show the general source ofthe threats, we


grouped exposure and sensitivity attributes into four categories: freshwater exposure, marine


exposure, life-stage sensitivity, and extrinsic sensitivity. We highlighted attributes with a mean


cluster score of3 or greater within each attribute category. We excluded all attributes that did


not differ across DPSs, such as exposure and sensitivity to ocean acidification and ocean cur-

rents. All analyses were performed in R [117].


Highlyvulnerable life stages


The overarching principle ofthis vulnerability assessment is that the most vulnerable DPSs are


those most sensitive to climate change andmost exposed to changing environmental condi-

tions [5]. We applied that same logic to determine which life stages within each DPS were


most vulnerable. Because life stages are typically segregated from each other in space and time,


they tend to be affected bydifferent exposure attributes. It was thus possible to pair specific


sensitivity and exposure attributes. For example, freshwater life stages occurring over fall and


winter are most exposed to extreme rain events and flooding, whereas those occurring in sum-

mer are exposed to stream temperature and summerwaterdeficit.


The specific attributes most relevant at each life stage varied among DPSs due to differences


in life history timing (Fig 2). However, for all DPSs, hydrologic regime was paired with the juve-

nile freshwater stage and sea level rise was paired with estuary stage. All other marine exposure


attributes were paired with the marine stage. To identify highly vulnerable life stages, we exam-

ined these sensitivity/exposure pairs and identified cases with scores higher than 3 in both


attributes.


Results


Relative vulnerability


Five Chinook, one coho, and one sockeye salmon DPSs ranked veryhigh in total vulnerability


to climate change due to a combination ofhigh and veryhigh scores for sensitivity and expo-

sure (Figs 3 and 4, red boxes). Bootstrap analyses indicated that two additional DPSs, Southern
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Oregon/Northern California Coast coho and Mid-Columbia spring-run Chinook, were bor-

derline between high and veryhigh (S3 Appendix). Among species, Chinook salmon had the


highest vulnerability rankings overall (mostly very high and high rankings), followed by coho


and sockeye (Fig 4). Steelhead and chum DPS scores were generally lower and nearly equally


spread across high and moderate vulnerability categories. The only species in the lowvulnera-

bility categorywas pink salmon, which was represented by a single, unlisted DPS. Individual


DPS scores are presented in the S2 Table and discussed in the S3 Appendix.


The preponderance ofcoho DPSs ranked veryhigh in vulnerability to climate change were


those occupying regions from southern Oregon to central California. Chinook and sockeye


DPSs that ranked very high in vulnerabilitywere concentrated in the two interior recovery


domains: Central Valley and Interior Columbia. These results suggest that a combination of


life history characteristics and geographic influences (including anthropogenic factors) con-

tributed to high vulnerability for coho near its southern range limit and for Chinook and sock-

eye throughout the interior domains.


Fig 3. Final cumulative vulnerability ranks. Box colors showfinal vulnerability rank for eachDPS as a product ofsensitivity and exposure

scores: red indicates veryhigh vulnerability, orange high, yellowmoderate, and green low. Uncertainty in final ranks was represented with a

bootstrap analysis. Borderline DPSs were those that placed in a higher rank in at least 25% ofresampled data. Borderline sensitivity ranks are

shown in italic, and borderline exposure ranks indicated with asterisks (). All other cumulative vulnerability ranks were considered likely.


https://doi.org/10.1371/journal.pone.0217711 .g003
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The sensitivity component spanned all vulnerability categories across DPSs and generally


aligned with cumulative vulnerability ranks (Fig 3). By contrast, the exposure component of


vulnerabilitywas relatively homogeneous across DPSs: ofthe 33 DPSs evaluated, 29 had high


exposure to climate change (Fig 3). This consistency stemmed from exposure scores that were


uniformlyveryhigh for exposure to ocean acidification and mostly high for sea surface temper-

ature and stream temperature.


Onlypink and chum, both typically coastal species, received lowor moderate scores for


these temperature-related attributes. In the Interior Columbia, exposure scores for both stream


temperature and hydrologic regime were near or above the threshold for veryhigh. Sensitivity


to loss ofsnowpackwas generally higher for spring-run Chinook than for steelhead and sock-

eye due to differences in spawn timing and habitat, respectively. For coho, threats from expo-

sure to stream temperature, flooding, and sea level rise pushed some DPS scores near the edge


ofthe veryhigh category.


To ensure that high scores in multiple categories did not reflect “double counting,” we


assessed all pairwise correlations between attributes. Attributes that were not strongly corre-

lated were assumed to capture different aspects ofclimate change, and therefore not double


counting. Two pairs ofattributes had a Spearman’s rho correlation coefficient over 0.75: sea


level rise and estuary stage, and sea surface temperature and flooding. Sea surface temperature


and floodingreflect independent effects ofclimate change and hence represented distinct


impacts ofconcern rather than double counting. The sea level rise and estuary stage pair may


reflect some shared impacts; however, the populations most dependent on the estuary stage are


also those exposed to the highest rates ofsea level rise. Nonetheless, we confirmed that neither


ofthese correlations affected final vulnerability categories by removing one from each pair and


recalculating vulnerability scores.


Adaptive capacity


Adaptive capacity scores reflected the opportunity perceived by scorers for trait plasticity to


help mitigate the negative effects ofclimate change (S3 Appendix). Results showed strong geo-

graphical patterns (Fig 5). All California Chinook and coho DPSs, the southernmost steelhead


Fig4. Number ofDPSs in each vulnerability rankby species.


https://doi.org/10.1371/journal.pone.0217711 .g004
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DPS, and both sockeye DPSs scored low in adaptive capacity. The southernmost DPSs within


each species mayalready be near tolerance limits, but these DPSs also have some ofthe most


severe anthropogenic impacts and therefore limited scope for potential adaptations to a


warmer climate. This explanation applied to Snake River sockeye. In contrast, Lake Ozette


sockeye is not climate stressed at present and was simply not expected to change


phenotypically.


The DPSs that scored highest in adaptive capacitywere Puget Sound Chinook, coho, and


steelhead; Lower Columbia Chinook and steelhead; and Snake River spring/summer Chinook


and fall Chinook. Northern California steelhead also scored high in adaptive capacity. Higher


scores reflected extensive life history diversity in both juvenile and adult stages. Most high-

scoring DPSs display extensive juvenile life historyvariation, such as the subyearling and year-

ling Chinook smolts, or 1- to 3-year-old steelhead smolts. Puget Sound and Lower Columbia


Chinook display both spring and fall adultmigration patterns, and Northern California steel-

head migrate over two protracted periods, from late fall to spring for the winter-run and from


spring to summer for the summer-run ecotype.


Chinook, coho, and steelhead DPSs had high variation in adaptive capacity scores, which


ranged from low to high, whereas in other species, all DPSs fell into a single category. For


example, all chum and pinkDPSs scored moderate, while both sockeye DPSs scored low.


There was uncertainty aboutwhether sockeye rearing conditions would become less suitable,


but the scorers’ best estimate was that smolt age was unlikely to change, and anychanges in


adultmigration timing would not substantially reduce climate stress. Selection for earlier adult


Fig 5. Adaptive capacityrankplotted against vulnerability rank. Vulnerability ranks were determined byexposure and sensitivity attributes (Fig 3). Adaptive capacity

attribute scores reflected the opportunity perceived by scorers that some trait change would help mitigate the negative effects ofclimate change.


https://doi.org/10.1371/journal.pone.0217711 .g005
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run timing in Snake River sockeye could be occurring at present [31]. However, the long


migration through exceptionallywarm reaches ofthe Snake and Salmon River will likely con-

tinue to challenge this DPS. The existing population is largely supported by captive broodstock


and large hatchery releases; therefore, it is not subjected to the full effects ofnatural selection.


How this might change in the future is uncertain.


Vulnerability profiles


Broad geographic trends in both exposure and sensitivity attributes were seen across DPSs,


owing to the large spatial scale ofclimate drivers (Fig 6). In both in the Central Valley and Inte-

rior Columbia domains, DPS scores trended higher in both exposure and sensitivity than cor-

responding scores from their respective adjacent coastal domains (Fig 6, lower panels). In


coastal domains, DPSs benefitted from the buffering effects ofthe Pacific Ocean and California


Current, both ofwhich ameliorate climate extremes. Fish in coastal domains also encountered


fewer anthropogenic hindrances to migration.


Southern DPSs also tended to score higher in vulnerability than northern DPSs. For exam-

ple, coho from the southernmost Central California Coast DPS ranked higher in vulnerability


than those from the mid-latitude Southern Oregon/Northern California Coast, which in turn


ranked higher than the three northernmost coho DPSs. This latitudinal pattern was also evi-

dent at the scale ofrecoverydomains, where DPSs ofthe three coastal domains in California


and Oregon were generallymore vulnerable than those ofthe two coastal domains in western


Washington. However, exceptions to these general trends were not uncommon.


To better elucidate general patterns ofvulnerability, we used a cluster analysis to group


DPSs with similar vulnerability characteristics and examined these groupings in relation to


geographical gradients and species characteristics. At the highest level ofthe dendrogram,


DPSs clustered into southern and northern groups (Fig 7). Floodingwas the best predictor of


separation between southern and northern branches and the second best between coastal and


interior branches. Southern and coastal DPSs faced higher floodingdue to intensification of


atmospheric rivers, which were projected to change more in southern than northern latitudes.


Interior Columbia DPSs were less affected by these extreme rain events.


The next level ofthe dendrogram primarily separated DPSs by species (Fig 7), especially


steelhead vs. other species. We noted that both southern and northern steelhead clusters


included some fall-run ChinookDPSs. Classification and regression tree results pointed to the


sensitivity attributes ofearly life history and juvenile freshwater stage as keypredictors ofsepa-

ration between clusters at the species level (S9 Fig).


Steelhead spawn in late winter and spring, and hence are less sensitive to changes in fall and


winter precipitation than fall-spawning salmon. Heat tolerance and behavioral flexibility also


tended to reduce threat levels for steelhead in the juvenile freshwater stage. The ChinookDPSs


that grouped with steelhead were primarily those with subyearling type juveniles. Their shorter


freshwater period produced relatively low vulnerability scores during the early life history and


juvenile freshwater stages. In particular, the fall-run subyearling juvenile type avoids depen-

dencyon rearing in freshwater during summer, when thermal impacts, hydrologic regime


shifts, and low-flow impacts are expected to be highest. We grouped more similar DPSs into


the six groups indicated with rectangles in Fig 7. Group names reflect the predominant species


and region ofDPSs in each group.


In the northern cluster ofthe dendrogram, spring-run Chinook and sockeye from the Inte-

rior Columbia grouped with Upper Willamette River Chinook. These three DPSs share a tem-

perature-stressed adultmigration and summer holding period. Puget Sound pink and both
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fall-run chum DPSs formed another group (with no listed DPS). The final group included all


other DPSs from central and northern Oregon and western Washington.


Each cluster also displayed a unique vulnerability profile (Table 4). Profiles varied widely,


from high scores in ocean acidification only (pink/fall chum), to high scores for freshwater and


marine exposure but not for sensitivity to extrinsic stressors (Western Washington and Ore-

gon), to high scores for freshwater and marine exposure and for extrinsic stressors (northern


and southern steelhead), and finally, high scores in freshwater, marine, life stage, and extrinsic


attributes (southern Chinook/coho as well as interior Columbia Chinook/sockeye).


In adaptive capacity, the southern Chinook/coho cluster had the lowestmean score. The


northern steelhead cluster had the highestmean score, although this resulted from high scores


for the two ChinookDPSs included in this cluster (see Fig 7). When the Lower Columbia


River ChinookDPS was included in the Western Washington/Oregon cluster, that group had


Fig6. Mean exposure and sensitivity scores by species and recoverydomain. Exposure scores are shown at left and

sensitivity scores at right by species in upper panels and by recoverydomain in lower panels. Because ofthe small

number ofDPSs in some domains, in Fig 6 the three recoverydomains from southern Oregon to southern California

are lumped into aCalifornia Coast group, and Oregon Coast is lumped with Lower Columbia. Boxes indicate the

interquartile range ofthe data, whiskers show1.5  the interquartile range, and the black line shows the median value.


https://doi.org/10.1371/journal.pone.0217711 .g006
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the highest adaptive capacity. Steelhead DPSs from the northern recoverydomains had mod-

erate adaptive capacity on average.


Specific attributes often scored in similar rank order across clusters (Table 4), although


regional and biological variations were frequent and provided important insights for recovery


planning. Among freshwater exposure attributes, stream temperature scored high in most clus-

ters, but floodingwas high only in the two California clusters, and hydrologic regime was high


only in the interior cluster. Both ofthese latter attributes reflected changes in flow and/or pre-

cipitation, with increased flooding and droughtmore relevant in southern locations and loss


ofsnowmeltmore relevant in northern locations.


Among marine attributes, exposure to ocean acidification and sea surface temperature were


highest in all clusters, with sea level rise second or a close third in both southern clusters as well


as the cluster for pink/fall chum. For southern coho, sea level rise maynot affect DPSs directly,


butmay represent a general threat to the freshwater/marine interface, triggering changes in


lagoon habitat or sand-bar breaching. The most sensitive life stage differed among clusters,


with adult stages more sensitive for interior DPSs, and juvenile stages more sensitive for south-

ern coho/ChinookDPSs. Finally, among extrinsic sensitivity factors, other stressors was the


Fig7. Cluster dendrogram based on attribute scores for each DPS. Groupings that define each cluster are outlined with red

(southern) and blue (northern) boxes, with the cluster name beloweach box.


https://doi.org/10.1371/journal.pone.0217711 .g007
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most common attribute to score high, and paired with hatchery influence for the northern


steelhead cluster and with population viability for the Interior Columbia Chinook/sockeye and


California Chinook/coho clusters.


Attributes that varied most across clusters reflected the major factors that differentiated the


most vs. least vulnerable DPSs across the entire study (Table 4; Fig 8). Overall, the least sensi-

tive DPSs spent the least amount oftime in freshwater (pink and fall chum), while the most


sensitive spentmore time in freshwater, had long summer adultmigrations, or were heavily


dependent on estuaries and near-shore coastal rearing habitat. Exposure factors that indicated


the highest vulnerabilities to climate change were encountered in both freshwater and marine


environments.


Adaptive capacity also differentiated DPS clusters, especially in relation to behavioral flexi-

bility, which relies on both inherent plasticity and habitat heterogeneity. Conceptually, we


refer to "natural processes" as the absence ofanthropogenic stressors, such as hatcheries and


habitat loss (Fig 8). Anthropogenic stressors scored in the sensitivity component are linked to


adaptive capacity in a broad sense because they are inherentlymore malleable than life histo-

ries. In general, DPSs with the highest sensitivity and exposure and lowest adaptive capacity


were the most vulnerable to climate change, as indicated by the red x in Fig 8.


Table 4. Vulnerability profiles by cluster. Mean cluster score was the mean attribute score across DPSs within the cluster. Scores were rounded down for each attribute.

Red cells indicate a mean score of3 or higher for exposure and sensitivityor lower than 1.5 for adaptive capacity.


Vulnerability profile cluster group


Attribute Southern Chinook/coho Interior Columbia Chinook/ 
sockeye


Southern Steelhead Northern Steelhead Western WA/OR Pink/ Chum


Freshwater Exposure


Stream temperature 3 3 2 3 3 2


Flooding 3 2 3 2 1 1


Hydrologic regime 2 3 1 2 2 2


Summer water 
deficit


2 2 2 2 2 1


Marine Exposure


Ocean currents 1 1 1 1 1 1


Sea level rise 3 1 2 1 2 2


Upwelling 3 2 2 1 1 1


SST 3 3 3 3 2 2


OA exposure 4 4 4 4 4 4


Life Cycle Sensitivity


Early life history 2 1 1 1 2 2


Adult freshwater 2 3 2 2 1 1


Juvenile freshwater 3 3 2 2 2 1


Cumulative life-cycle 3 3 2 2 2 2


Estuary 3 1 2 1 2 2


Marine 3 2 2 2 2 2


OA sensitivity 1 1 1 1 1 2


Extrinsic Stressors


Other stressors 3 3 3 3 2 2


Population viability 3 3 2 2 2 2


Hatchery influence 2 2 1 3 2 1


Adaptive Capacity


Adaptive capacity 1 2 2 3 2 2


https://doi.org/10.1371/journal.pone.0217711 .t004
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Highlyvulnerable life stages


Among life stages that scored high in both sensitivity and exposure, regional differences were


pronounced. For coho in the two southern recovery domains and for Chinook in the Central


Valley, DPS sensitivity scores were high at both the estuary and marine stages, and exposure


scores were high for sea level rise and sea surface temperature (Table 5). For coho, steelhead,


and some fall Chinook in the southern recovery domains, estuary conditions also affect access


to freshwater spawning habitat, where watersheds are seasonally blocked by sand bar forma-

tion. Specific projections ofhowestuary and lagoon dynamics will change adult access were


not available, and thus did not greatly change scores for the estuary or adult stages for these


DPSs. However, potential obstruction to spawning habitat was noted as a concern by scorers.


Because ofthe highlymodified Sacramento-San Joaquin Delta, all Central ValleyDPSs


were vulnerable at the estuary stage. Diversion ofwater from the delta supports the largest agri-

cultural economy in the U.S. and provides drinking water to more than 20 million people


[118]. Extensive water infrastructure in the estuaryhas dramatically altered flows and reduced


survival ofmigrating fish. Furthermore, juveniles from all three Central ValleyChinookDPSs


migrate predominantly as subyearlings, and as such are greatly dependent on estuary and


near-shore habitat during the critical first year. These DPSs are therefore more vulnerable to


sea level rise than DPSs with yearling-type juveniles.


Fig8. Conceptualmodel ofhighly influential attributes in final vulnerability ranks. The most vulnerable DPSs had scores in the intersection of

high rates ofchange in exposure, long periods ofsensitivity, and lowadaptive capacityattributes (red x), as detailed in Table 4. Natural processes here

refer to the absence ofother stressors and hatchery influences.


https://doi.org/10.1371/journal.pone.0217711 .g008
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All coho were highlyvulnerable at the juvenile freshwater stage because ofits extended dura-

tion (1+ years) and corresponding longer exposure to rapidly rising summer stream tempera-

tures. In three ofthe five coho DPSs, floodingor hydrologic regime posed an additional high


exposure at the juvenile freshwater stage.


Yearling Chinook, which are characteristic ofmanypopulations in the Interior Columbia


recoverydomain, were also highly vulnerable at the juvenile freshwater stage because ofthe


year-round reliance during this stage on freshwater habitat. Although specific habitat prefer-

ences differ, both coho and Chinook are sensitive to changes in summer flow and stream


Table 5. Highly vulnerable life stages byDPS with associated exposure attributes. Criterion for inclusion was a

score of3 or higher in both sensitivity and exposure attributes in each subheading. Additional high exposure scores for

upwelling (a), flow regime (b), and flooding (c) also occurred in some DPSs.


Life stage and DPS Exposure attribute


Early life history Summer water deficit/Hydrologic regime


Sacramento River winter-run Chinook Summer water deficit


Puget Sound Chinook Hydrologic regime


Juvenile freshwater stage Stream temperature


Mid-Columbia spring-run Chinookb


Snake River spring/summer-run Chinookb


Upper Columbia River spring-run Chinookb


Lower Columbia River coho


Oregon Coast coho


Central California Coast cohoc


Southern Oregon/Northern California Coast cohoc


Puget Sound cohob


Estuary stage Sea level rise


Central Valley fall/late fall-run Chinook


Central Valley spring-run Chinook


Sacramento River winter-run Chinook


Central California Coast coho


Southern Oregon/Northern California Coast coho


Marine stage Sea surface temperature


Central Valley fall/late fall-run Chinooka


Sacramento River winter-run Chinook


Central California Coast coho


Southern Oregon/Northern California Coast coho


Adult freshwater stage Stream temperature


Mid-Columbia spring-run Chinook


Middle Columbia River steelhead


Snake River Basin steelhead


Snake River sockeye


Snake River spring/summer-run Chinook


Upper Columbia River spring-run Chinook


Upper Columbia River steelhead


Upper Willamette River Chinook


Central Valley spring-run Chinook


aExposure to upwelling also scored high

bExposure to hydrologic regime also scored high

cExposure to flooding also score high


https://doi.org/10.1371/journal.pone.0217711 .t005
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temperature. Most Interior Columbia ChinookDPSs were also highlyvulnerable to tempera-

ture in the adult freshwater stage due to long adultmigrations in spring and summer through


highlymodified rivers, along with exposure to high summer stream temperatures during the


holding period prior to spawning. Upper Willamette spring-run [119, 120] and Central Valley


spring-run Chinook [121] face similar thermal challenges and high mortality between adult


migration and spawning. Snake River fall-run Chinook did not score high in sensitivity to


stream temperature, although adults do encounter high temperatures during late-summer


migrations and have experienced compromised fecundity as a result [122, 123].


For most DPSs, sensitivity attributes were not scored high at the early life history stage.


Puget Sound Chinookwas an exception due to sedimentation and scour during flood events.


Sacramento River winter-run Chinook also scored high in sensitivity at this stage. This DPS


incubates eggs over summer, when stream temperature can be high ifcold water in the Shasta


reservoir is insufficient to cool the upper Sacramento River throughout the incubation period


[38]. A recent analysis ofUpper Willamette River spring-run Chinook indicated high tempera-

tures are projected to increase mortality in the egg stage for this DPS as well, because spawning


habitat is constrained bydams to the lower river reaches [124].


Data quality


Most evidence used for scoring was based on quantitative data specific to each DPS, although


DPSs were often represented byonly a few index populations that were monitored consis-

tently. In some cases, information on one DPS had to be inferred from a similar DPSs. Still, rel-

ative to information available for mostmarine fish, data qualitywas quite strong.


With the exceptions ofthe highlyquantified projections for exposure to ocean acidification


and sea surface temperature, sensitivity attributes tended to be based on higher-quality data


than exposure attributes. Likewise, data for freshwater attributes was generally ofhigher qual-

ity than that for marine attributes (S10 Fig, top panel). Specifically, the freshwater life-stage


sensitivity attributes ofearly life history and ofjuvenile and adult freshwater stage had relatively


high data quality, as did assessments ofpopulation viability and other stressors. The weakest


data for sensitivity attributes concerned sensitivity to ocean acidification and survival during


the marine stage. In both ofthese cases, impacts on salmon were mediated bynumerous poten-

tial food web interactions, which made net effects difficult to predict.


Some ofthe highest data-quality scores among the exposure attributes were from hydrolog-

ical and stream temperature models. Floodingand waterdeficit exposures were less certain,


and this was also reflected in high standard deviations in scores (wider spread across bins, S10


Fig, bottom panel). In the marine environment, data for exposure to ocean acidification and sea


surface temperature were ofvery good quality, with consistent results across manymodels.


However, projected changes in ocean currents and upwellingwere inconsistent across models.


Ofall attributes, upwellinghad the highest mean standard deviation oftallies across bins, indi-

cating the largest uncertainty.


Discussion


Spatial and biological patterns in vulnerability


Patterns in climate vulnerability have important implications for Pacific salmon across the


Pacific Coast, both in terms oftotal variation in life history diversity and in the likelihood of


southern or interior range-edge contractions. The DPSs most vulnerable to climate change


were those with life history types presently rare in the CCLME but prevalent further north,


such as spring-run Chinook, and those unique to the species as a whole, such as late-fall and


winter-run Chinook and summer-run chum. For Chinook, the highest vulnerability scores
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were for DPSs ofthe Central Valley and Interior Columbia recoverydomains. For sockeye and


steelhead as well, DPSs ofthe Interior Columbia scored higher than those ofthe coastal


domains. This geographical pattern suggested a potential range contraction toward the coast


for anadromous life histories unless access to higher-elevation habitats is restored and habitat


quality in rearing areas and migration corridors is improved [108].


For coho, which have been extirpated from interior basins, vulnerabilitywas veryhigh in


the entire southern portion ofthe range throughout California and southern Oregon. Finally,


for steelhead, the southernmost salmonid in the CCLME, low adaptive capacity (potential loss


ofanadromy) and proximity to critical thresholds in the present climate raise the possibility of


impending range contraction. Lower exposure scores for southern coastal DPSs suggest such a


contraction could be coastward rather than northward. Resident forms ofO. mykiss mayper-

sist in the inland areas, although these populations maybecome increasingly isolated [125].


Species-level results and similarities with other vulnerability assessments. Although we


employed a rapid-assessment, our findings were ofsufficient detail to provide conclusions


similar to those ofmore geographically or ecologically focused studies [126–130]. Among spe-

cies we considered, Chinook and coho had the greatest proportion ofhighly vulnerable DPSs.


Climate vulnerability for the two sockeye DPSs was split between very high and moderate (Fig


4), while steelhead and chum DPSs were intermediate between high and moderate vulnerabil-

ity. Puget Sound pink salmon scored lowest in vulnerability.


This species-level ordering was consistent with results from the West Coast Fish Climate


VulnerabilityAssessment (M. Haltuch, NOAA Fisheries, personal communication), which


ranked Chinook salmon vulnerability very high, and coho, sockeye, steelhead, and chum high.


In the Eastern Bering Sea Climate VulnerabilityAssessment, all five salmon species scored


high in sensitivity but low in exposure (P. Spencer, NOAA Fisheries, Seattle, personal commu-

nication). Lower exposure further north as well as increasing abundance and apparent range


expansion ofChinook [131, 132] and Atlantic salmon (Salmo salar) [133] suggest that salmon


species may shift the centroid oftheir respective ranges northward, as predicted byother


niche-mapping studies [75, 76].


Several other groups have conducted vulnerability assessments that included Pacific salmon


and steelhead. Both the NOAA Fisheries Multi-species RecoveryPlan [126] and Moyle et al.


[127] ranked California salmonids. Pacific Northwest steelhead were ranked byWade et al.


[128, 129], and all species were included in an assessment by the Washington Department of


Fish and Wildlife [130]. Our relative ranks were similar to ranks from other studies, especially


for Chinook and coho salmon, unlike recent reviews where systematic comparisons ofvulner-

ability assessment results for terrestrial species found poor congruence [107, 134]. Salmon


assessments maybe more similar to each other both in the data that is analyzed and the catego-

ries ofthreats that are considered than across the broad spectrum ofterrestrial taxa; a compari-

son oflizards produced a similar congruence [106]. Nonetheless, variation in spatial resolution


and criteria for vulnerability do produce different results, which should be kept in mind when


using these results in management decisions.


Steelhead vulnerabilitywas somewhatmore variable across studies than Chinook and coho,


partlydepending on whether authors rated loss ofecotypes vs. loss ofthe DPS as awhole. Stud-

ies with finer spatial and temporal resolution had greater differentiation ofrisk and generally


higher vulnerability scores, potentially resulting from severe local stressors and specialized eco-

types. For example, certain parts ofthe Northern California steelhead DPS, specifically the


summer-run ecotype, were scored as critically vulnerable in the Multi-Species RecoveryPlan.


On the other hand, studies with coarser spatial and biological resolution placed nearly all


salmon and steelhead in a single, moderate-high or high-veryhigh risk category [130].
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Overall, the factors that caused highest vulnerability ratings among salmon DPSs are the


same factors that caused higher vulnerability in manydiadromous species compared with


marine species [35]. As a functional group, diadromous species (e.g., sturgeon, Acipenser spp,


Bluebackherring, alewife and American shad, Alosa spp., and Atlantic salmon), had the high-

est proportion ofvulnerable species in the Northeast Climate VulnerabilityAssessment. The


risk to Atlantic salmon was considered veryhigh. Thus, salmon populations on both coasts are


likely to contract northward for similar reasons [135]. Diadromous species relyon sequential


freshwater, estuarine, and marine habitats; therefore, these species face a diverse suite of


threats from climate change throughout their complex life cycles.


Specific climate threats. High exposure ratings throughout our results stemmed from a


relatively consistent suite ofexposure attributes (Table 4, Fig 8). Nearly all populations face


high exposure to changes in sea surface temperature and ocean acidification, and most will


confront considerable increases in summer stream temperatures. Accordingly, scores for these


attributes were generally quite high (Table 4).


In freshwater and estuarine environments, other impacts varied by latitude and proximity


to the coast. Exposure scores were generally higher for southern than for northern DPSs in sea


level rise, flooding, and upwelling. Sea level is projected to rise more slowly in the northern


CCLME, where geological uplift compensates somewhat for an expanding ocean [97, 136].


Dramatic increases in projected flooding along the West Coast stem from intensification of


atmospheric rivers—a consequence ofwarmer temperatures over the Pacific Ocean [67].


Among present global models, California is projected to experience the greatest change in


atmospheric rivers [67, 137–140]. Changes in the intensity and timing ofupwellingare less cer-

tain. Nonetheless, present models suggest that the largest changes will manifest offthe coast of


California [98, 141], where relativelymild summer stream temperatures depend fundamen-

tally on upwelling and the closely associated fog regime.


Salmon and steelhead in interior regions, as well as those in Puget Sound, had generally


high DPS exposure scores for hydrologic regime due to loss ofsnowpack in mid- and high-ele-

vation watersheds. Snowpack is alreadydeclining in response to warmer winters throughout


the western U.S. [4, 142, 143]. In mountainous regions, warmer winters will transform snow-

dominated hydrographs with lowwinter flows followed by a protracted spring snowmelt to


systems characterized by rapid snowmelt and high-flow events during the incubation period


[142]. In western Washington, salmon populations may soon lose snow-dominated water-

sheds entirely [144]. Such losses are expected to reduce life history diversitywithin these DPSs


[68]. While these DPSs maybe buffered from outright extinction by their existing behavioral


diversity, losses ofhabitat diversity and cooling influences ofsnowmelt may increase vulnera-

bility [104].


Interior Columbia DPSs face the largest percentage loss ofsnow-dominated habitat [144].


These populations are dominated by life history types specifically adapted to elevated flows in


spring, which expedite juvenile migrations ofup to 1500 km. Summer stream temperatures


are also cooler in snow-dominated basins. Characteristic life history strategies in these regions,


such as summer juvenile rearing and adult holding depend on these cooling influences.


Hence, these genetically distinct life histories are perhaps most threatened by loss ofsnow


cover.


California steelhead tended toward more moderate exposure scores for stream temperature


because ofa weaker link between rising atmospheric and stream temperature in coastal Cali-

fornia. Heat-moderating factors such as coastal fog, riparian evapotranspiration [145], and


groundwater inputs, are especially relevant in some locations and contribute to a decoupling


ofstream and air temperatures [146]. This decoupling suggests a potential capacity for thermal


refuges from rising air temperatures, all else being equal. However, the buffering capacity of
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mitigating factors such as fog could diminish in a warmer climate [147], increasing exposure


to stream temperature well beyond the moderate levels we scored.


Decoupling ofair and water temperatures can also result from a high frequencyofintermit-

tent streams in rain-dominated basins such as those in southern California [148, 149], and


elsewhere [150]. Climate change could entail an end to this decoupling process as well, limiting


future habitat to a greater extent than reflected in our stream temperature exposure scores


[151, 152]. In short, coastal steelhead in California maybe somewhat protected by thermal ref-

uges, but the factors maintaining those refuges themselves likelyhave climatic thresholds


beyond which they cease to operate.


Most vulnerable life stages. Salmon life history types are closely tied to hydrological con-

ditions, so the geographical patterns in exposure factors parallel trends in highly vulnerable life


stages. At the scale ofthis assessment, Chinook demonstrated these patterns most clearly


because DPSs differ systematically in the duration offreshwater stages [20, 68, 153]. Southern


ChinookDPSs currently lack access to snow-cooled juvenile habitat, so they characteristically


smolt as subyearlings. Subyearling juveniles are more vulnerable to near-shore development,


sea level rise, and upwelling. Thus for southern ChinookDPS juveniles, the estuary and marine


stageswere highly vulnerable (Table 5). For yearling Chinook and coho migrants, sensitivity


scores were higher at the juvenile freshwater stage than the estuary stage because oftheir


extended freshwater rearing strategies. These strategies, however, make them more vulnerable


to stream temperature increases and loss ofsnowpack (hydrologic regime shift).


All ofthe DPSs with a highlyvulnerable adult freshwater stagemigrate in spring or summer,


so theyare exposed to high stream temperatures and pre-spawning mortality. The interior pop-

ulations also confront long migrations. For southern coastal species, sensitivity in the adult


stage might have scored higher due to difficulties accessing freshwater habitat. However, we


could not quantify this difficulty owing to uncertainty regarding net change in sand-bar


breaching. Our results primarily reflected the fact that longer migrations and freshwater phases


expose salmon to more numerous freshwater climate threats and anthropogenic stressors.


Nevertheless, the steelhead we considered, including those with extended freshwater phases


and migrations up to 1500 km (Table 1), tended to score lower in sensitivity than Chinook in


the same region. Greater resilience in steelhead stems from several factors. First, steelhead


inhabit streams warmer than those used byChinook or coho salmon [61, 154, 155]. Compared


to spring-run Chinook and sockeye salmon, steelhead also display greater mobility during


migration, utilizing high-elevation, high-velocity, and hard-to-reach or ephemeral and inter-

mittent stream habitats, as well as cool-water tributaries for temporary staging [156]. Despite


these advantages, steelhead access to freshwater habitats can be intermittent and hindered by


changes in storm frequency [157]. Second, although both species have a strong genetic compo-

nent in life history traits, O. mykiss typically expresses more life history strategies within DPSs,


so the DPS as a whole appears less vulnerable than ChinookDPSs [22, 158].


Relatively fewDPSs appeared highly vulnerable in their marine stage. However, this was


also the stage with the greatest uncertainty in scores. While physical conditions in freshwater


are clearly and directly linked to salmon survival, factors that influence ocean survival are


more complex [159]. Physical processes in the ocean affect salmon through their influence on


prey availability and abundance, as well as through the spatial distribution ofcompetitors and


predators. Ocean food webs contrast sharply in cold vs. warm years [88, 160, 161]. The combi-

nation ofincreasing sea surface temperature and ocean acidification heightens the risk for a


major, novel reorganization ofmarine ecosystems.


Marine biological regime shifts ofthe past are well documented [162–164], and demon-

strate widespread ecological responses to change in ocean conditions. These regime shifts were


associated with climate changes much more subtle than those projected over the next few
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decades; hence theyprovide onlyhints ofpotential offuture impacts. For salmon especially,


specific consequences ofocean regime change are hard to predict, owing in part to the general


non-linearity ofmarine ecosystem dynamics, along with the numerous possible fish communi-

ties that could establish themselves [40]. Nonetheless, prolonged periods ofpoor ocean sur-

vival have been observed during generallywarm decades [165]. In recentwarm years, a high


proportion ofempty stomachs were observed in juvenile salmon, as well as poor body condi-

tions, despite an abundance ofpreybiomass [166]. Thus although we have highlighted risks in


freshwater stages, these findings suggest that warmer oceans could be catastrophic for salmon


populations throughout the CCLME, as has also been suggested for Atlantic salmon [135].


Adaptive capacity


Although the adaptive capacity score was not as formalized as the rest ofthe assessment, results


are consistent with larger patterns in habitat and life historydiversity. Among DPSs with simi-

lar life historydiversity, those that scored higher in adaptive capacity occupied habitat that was


climatically diverse but generally closer to optimal for salmon. Such habitats featured moderate


temperatures and wetter overall climates—conditions that support a large range ofsalmon life


histories. Northern California steelhead occupy the interface between the more xeric southern


and interior eco-climatic zones and the wetter zones ofcoastal Oregon and Washington, and


they exhibit a wide range ofjuvenile and adult behaviors. Lower Columbia River Chinook and


steelhead and Puget Sound Chinook also display various life histories atmultiple life stages.


Puget Sound and Lower Columbia DPSs benefit from steep elevation gradients ofthe Cascade


and Olympic Mountains, which provide cool water without the hazards ofa lengthymigration.


This advantage was reflected in the lower life-stage sensitivity scores for the western Washing-

ton/Oregon cluster (Table 4).


For some DPSs, high adaptive capacity scores reflected direct evidence ofadaptive change.


For example, for Snake River fall-run Chinook, a shift in the proportion offish adopting year-

ling vs. subyearling juvenile life history strategies has been observed [7, 167]. Increased propor-

tions ofyearling type fish appear to have evolved in response to anthropogenic habitat


modifications. Ifclimate change favors a reversal ofthis trend, then this DPS maybe expected


to continue such adaptive responses. Shifts in adult run timing have also been observed for


multiple DPSs in the Interior Columbia recoverydomain. Evolutionary changes in run timing


were associated with environmental change [31], as well as hatchery supplementation [168].


Some ofthese DPSs inhabit heavilymodified areas; for example, most Snake River salmon


must pass eight large hydroelectric dams during both the juvenile and adult migration. Puget


Sound DPSs inhabit an area ofrapidly expanding human population, with a projected increase


of42% by2050 [169]. However, unusual behaviors have emerged under altered conditions


[170–172], suggesting that adaptive responses to climate change will continue to arise.


Most DPSs that scored high in adaptive capacity benefit from complex terrain that includes


snow-cooled streams. However, these snow-dominated hydrological regimes have been con-

sistently projected to disappear during the present century [144, 173], potentially causing a net


contraction in life historyvariability. Thus, the selective landscape could shift to favor a differ-

ent balance oftraits, including some that are not exhibited now. Other DPSs scored moderate


in adaptive capacity, either due to life history constraints in the case ofchum and pink salmon,


or due to habitat loss and degradation in the case ofinterior steelhead and other Chinook.


Adaptive capacitywas ranked low for the three Central ValleyChinookDPSs, along with


Central California Coast coho and Snake River sockeye. These ranks were associated with high


scores for extrinsic exposure attributes and cumulative life-cycle complexity (Fig 5 and


Table 4). Chinook, coho, and steelhead DPSs in the two southern clusters had the lowest
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population viability scores and highest exposure to anthropogenic impacts (Table 4). These


impacts included significant hatchery influence and other stressors such as water withdrawals/


diversions, habitat degradation, loss ofaccess to higher elevation (cooler) spawning and rear-

ing habitats [53, 108], and potential competition or predation from invasive species. Manyof


these stressors are expected to increase with climate change, as human demand for water


increases [3, 4], warm-water invasive predators expand their range [174–180] and the viru-

lence ofsome diseases intensifies [181–184].


Reductions in abundance, genetic and phenotypic variation, along with proximity to


environmental tolerance limits, has brought manyDPSs to a threshold ofcritical


impairment to life history types. Low adaptive capacity and high cumulative life cycle effect


scores reflected the fact that without access to historical habitats [108, 185, 186], southern


DPSs have fewer options for behavioral mitigation ofclimate impacts [187] than their con-

specifics to the north.


In part, low adaptive capacity scores for Central ValleyChinook resulted from its various


life history types that have differentiated over evolutionary time and are considered distinct


from one another at the DPS level. Each ofthe three Central ValleyChinook run types is spe-

cialized to a particular aspect ofthe hydrologic profile, and thus each is especially vulnerable to


hydrologic change. In contrast, summer and winter steelhead run types are less genetically dis-

tinct and currently considered part ofthe same DPS [158]. Moreover, anadromy itselfis more


variable in steelhead than in Chinook. Many steelhead populations interbreed with resident


forms ofO. mykiss, with the frequencyofalleles relating to anadromyfluctuating over time


[125, 188]. Climate risks to steelhead include loss ofthe anadromous life history type as a


major component ofthe DPS.


Historical trends in loss ofdiversity


We identified patterns ofclimate vulnerability that mirrored patterns ofextinction estimated


for all six species we assessed. Gustafson et al. [189] enumerated loss ofhistorical populations


and DPSs in the western U.S., with the concurrent loss ofecological, genetic, and life history


diversity. Although overall estimated losses were considerable (29%), they found evidence of


fewer extinctions along the northern coastal regions (<20%) compared with southern Califor-

nia (35%), the Central Valley (57%), and the interior Columbia Basin (35-62%). These patterns


typified the north-to-south and coast-to-interior gradients in our vulnerability scores.


Greater losses in the interior domains were primarily due to large, impassable dams, which


eliminated manypopulations simultaneously. Gustafson et al. [189] also found that for Chi-

nook salmon and steelhead, extinction rates ofstream-maturing populations with longer fresh-

water phases were higher than those ofocean-maturing populations that reside in freshwater


for shorter periods. They found greater extinction rates in sockeye and coho compared with


pink and chum salmon, also reflecting the predominant patterns seen in our assessment. Such


similarities supported our conclusion that freshwater-dependent life history types are more


vulnerable, and that climate change will likely continue the direction ofanthropogenic pres-

sures that have accumulated over the past two centuries.


Overall, both historical and future losses ofdiversity pose a critical challenge for all Pacific


salmon species. At both the DPS and species level, the most fundamental components ofadap-

tive capacity are life historydiversity, physiological performance, behavioral and morphologi-

cal plasticity, and genetic variability. However, for West Coast salmon populations, some of


the most distinctive and rare characteristics are those at greatest risk. At the same time, large


proportions ofstream habitat that could provide refuges to help sustain these populations have


been lost to anthropogenic barriers [190].
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Methods ofincreasing climate resilience


Most ofthe DPSs we evaluated are listed as species ofconcern, threatened or endangered


under the ESA or are considered by states as sensitive, almost entirely as a result ofanthropo-

genic stressors. Reducing anthropogenic stressors could greatly improve responses to climate


change by improving the overall status ofthese DPSs in terms ofabundance, productivity, spa-

tial structure, and diversity.


A robust DPS has greater resilience by virtue ofstrong population dynamics that make sto-

chastic extinction less likely. Such strengths rely on population spatial structures that provide


refuge from disturbances and can allow adaptation to occur at fine scales, as well as diversity in


genetic makeup, life history, behavior, and morphology [34, 108]. These processes provide the


needed rawmaterial to respond to climate change, allowing for a “portfolio effect” that reduces


volatility and risk to the larger demographic unit [191–196]. Increasing synchrony in both cli-

mate [152, 197] and salmon population responses [198] indicates declining inter-population


diversity and presents a major threat to DPS persistence.


Climate change presents an arrayofspecific threats that can act synergisticallywith other


threats, dramatically increasing the impacts ofeach [108]. In particular, the loss ofpopulation


spatial structures, as well as habitat heterogeneity and connectivity, removes the means by


which salmon have historically persisted through frequent disturbances and climate extremes.


Recent analyses in terrestrial environments found a correlation between habitat loss and cli-

mate stress [199]. An analysis ofbull trout (Salvelinus confluentus) also found that genetic rich-

ness is lower in habitats with the highest climate exposure [110]. Thus, due to past adaptation


or recent stressors, adaptive capacitymayalreadybe at its lowest levels preciselywhere salmon


need itmost. In prioritizing conservation actions, it is therefore worth exploring specific inter-

actions between existing threats and climate drivers.


Habitat restoration is especially important in allowing salmon to express their intrinsic life


historydiversity. Salmon are highly adapted to disturbance regimes, but theyneed access to a


wide variety ofphysical and thermal conditions within a watershed ifthey are to respond to


increasing climate variability, such as frequent flooding or persistent droughts. Three main


themes have emerged from recent literature (e.g., [55, 108, 200]). First, reconnection ofhabi-

tats blocked by artificial barriers, either longitudinally or laterally (floodplains), can be highly


effective in expanding the effective climate space ofa watershed. Reconnected habitats restore


natural processes and provide refuges from extremes in both temperature and flow. Second,


amelioration oftemperature or flow constraints can actively reduce climate stress, for example,


through hypolimnetic releases from reservoirs, reconnection to historical sources ofcool


water, riparian restoration, and other techniques. Finally, identifying and improving access to


food-rich environments can improve tolerance ofclimate stress by reducing bioenergetic con-

straints and mortality risks that are often lower for larger fish.


Projects focused on restoration and protection ofaccessible habitat are underway in numer-

ous river systems, although the scope ofwork needed for species recovery sometimes involves


nearly all existing habitat [201]. Nonetheless, when estuarine and freshwater habitats and pro-

cesses are restored, natural environmental complexity provides a buffer against climate


impacts in some cases [202]. Model results show that restoration can mitigate for declines that


would otherwise result from climate change [203–205]. Guidelines to identify habitat restora-

tion actions that will have a climate benefit have been developed [55] and are being used to


realign priorities in some watersheds [206], but have not become the norm [207]. Management


offreshwater stream temperatures and flows to support a diversityofsalmon life history strate-

gies, as well as to improve survival (and thus abundance and productivity) will be a crucial tool


for increasing resilience to climate change [108, 208, 209].
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Large, impassable dams block access to large areas that could serve as climate refuges as


well as supporting more diversity and larger populations in general [208, 209]. There have


been major improvements in fish passage at dams on the mid and lower Columbia and Snake


Rivers [210], and reintroduction ofcoho to the interior Columbia is currentlyunderway [211].


Furthermore, removal ofdams has become much more frequent in recent years, including


dams on the Elwha, Rogue, White Salmon, Sandy, and Carmel Rivers [212–215]. Salmon


responded rapidlywhen multiple dams were removed in the Rogue [216], Sandy [217] and


Elwha River basins [218–220], as did other salmonids, including re-establishment ofthe anad-

romous life history in bull trout (Salvelinus confluentus) [221].


Nonetheless, a large fraction ofhistorical salmon habitat is still completely inaccessible


[190, 222]. Pilot efforts to establish experimental populations above some dams are underway.


For example, reintroduction ofwinter-run Chinook to historical habitat in the Sacramento


River Basin has involved removal ofmigration barriers and restoration ofmore natural flow


(Battle Creek [223]), as well as transport above barriers that will continue to be impassable


(McCloud River, above Shasta Dam [224]). Similar projects exist for coho, Chinook, and sock-

eye salmon and steelhead in the Columbia River Basin [225–228]. However, because certain


dams will not be removed in several ofthese plans, assisted migration using trap-and-haul


operations will continue to be essential [185, 186, 224], adding uncertainty for long-term pop-

ulation viability. In other cases, the inadequacy ofexisting dams to cope with new extremes of


flow and sedimentmovement may support removal as a tool to mitigate climate change


impacts.


Hatchery supplementation can reduce fitness in wild salmon populations both through


introducing maladaptive genotypes and reducing the effective population size ofwild popula-

tions [229, 230]. Therefore, reducing the number ofhatchery-origin fish in general can be


expected to improve the adaptive capacity ofwild populations in the face ofincreasing expo-

sure to climate change. In the case ofhighly endangered populations, however, hatcheries can


provide a short-term buffer from extinction risks [231], which is the primary risk for salmon


during adaptation to climate change. Criteria for limiting introgression between hatchery and


natural-origin fish have been developed to reduce the risks ofdomestication [232]. Further-

more, improvements in hatchery spawning techniques, mating designs, incubation and rear-

ing protocols, may reduce the potential for inbreeding and domestication selection [233].


Harvest practices also could be adjusted based on periods and conditions when populations


are less stressed. For example, catch-and-release fisheries or fishing closures are used to restrict


angling to cool temperature periods. Such practices mitigate the interaction between handling


and temperature stress [234], but run the risk ofaccidentally selecting on run timing [235] and


other traits [236, 237]. Consideration ofhowall anthropogenic factors exacerbate or possibly


mitigate for climate stressors is much needed [238]. For example, fisheries typically select for


smaller body size and shorter generation time, which could also be advantageous in a warming


climate [239, 240]. However, these traits also reduce fecundity and population stability, which


is ultimately disadvantageous for both humans and salmon population viability [239–243].


More active proposals ofassisted gene flowand gene editing are being proposed to intro-

duce more heat tolerant genotypes into hatchery programs [244] and wild populations [245–


247]. However, as with anynew technology, risks are difficult to quantify and there are many


factors that need to be considered [248–255]. In many cases, humans have intentionally or


unintentionally caused traits to shift in direction or variability that are maladapted for climate


change [238, 256–258], putting some DPSs at additional risk. More research is needed to iden-

tify best practices in relation to anthropogenic selection (e.g., [242]). Though manyuncertain-

ties remain to be addressed, all ofthese avenues can potentially improve opportunities for local


adaptation and overall survival.
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Conclusion


Loss ofthe southernmost populations within a species’ range is widely predicted with climate


change [259], but our assessment also highlighted that unique life histories are at high risk.


Both the late-fall and winter-run Chinook ecotypes exist onlyat the southern end ofthe species


range, and both face extinction without continued intensive management. Similarly, for chum


salmon, the summer-run is rare and faces relatively greater vulnerability than the more com-

mon fall or winter-run life history types in northern regions. Local adaptations to distinct flow


and temperature conditions are the characteristics that contribute to high vulnerability for


these life history types and make them particularly sensitive to climate change.


In addition to southern range contractions, we found that interior losses maybe even greater,


due in part to greater change to interior climates and anthropogenic constraints on migration


pathways. Some life histories ranked highlyvulnerable byus or others, such as spring-run Chi-

nook and northern California summer-run steelhead, will still be represented further north.


However, Chinook salmon and steelhead that evolved distinct lineages in interior basins [21, 22]


are at risk oflosing some oftheir unique life histories not only in the ColumbiaRiver Basin but


also in the neighboring Fraser River Basin in Canada [32, 260, 261]. The evolution ofearlyadult


migration (spring-run Chinook and summer-run steelhead) appears to reflect a rare event that


would be quickly lost ifthese migratorypathways are selected against [158]. Declines in these life


histories could entail significant loss ofdiversity in these species as awhole.


The highest scores for extrinsic effects (anthropogenic stressors) occurred in interior and


southern regions (Table 4), exactlywhere climate is expected to change the most. A similar


pattern in smaller-scale genetic analyses [110] suggests this could be a widespread phenome-

non. Efforts to promote resilience to climate change are similar to those that increase viability


more generally and have been part ofhistorical conservation practices. However, our assess-

ment indicates thatmore intense and perhaps novel efforts will be needed to compensate for


the added pressure from climate change. Additional research to refine this assessment and


explore adaptive capacitywould be especially valuable. For DPSs that scored high in adaptive


capacity, particular care is warranted to avoid loss oflife historydiversity and thus maintain


the flexibility to continue adapt to climate change in the future. Resource managers should


expect changes in fish characteristics, such as run timing and body size, but also other


responses which have unknown consequences for population viability.


Bypointing to the most vulnerable DPSs, identifying the most vulnerable life stages within


each DPS, and assessing where life histories are most likely to change, these results provide a


framework to support recoveryplanning for climate change impacts on West Coast salmon.


This assessment considered present conditions, and therefore present risks confronted byPacific


salmonids that are related to climate change. Most, ifnot all, Pacific salmonid habitat in the west-

ern U.S. has diverged significantly from historical conditions and processes. Where dams block


passage and interrupt ecological and physical processes, dam removals will likely result in habitat


that diverges less from those seen historically. This is likely to reduce impacts ofclimate change


for fish at all life stages. As demonstrated by recent dam removals and restoration activities that


reconnect floodplains, physical and ecological responses can be rapid and can effectively reduce


habitat constraints on these systems [217, 218]. Thus, we maybe able to provide some reliefto


the extensive climate change risks highlighted in this vulnerability analysis.
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