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Abstract


C
limate models used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report


(AR4) on the whole reproduce the observed seasonal cycle and 20th century warming trend of 0.8°C (1.5°F)


in the Pacific Northwest, and point to much greater warming for the next century. These models project


increases in annual temperature of, on average, 1.1°C (2.0°F) by the 2020s, 1.8°C (3.2°F) by the 2040s, and 3.0°C


(5.3°F) by the 2080s, compared with the average from 1970 to 1999, averaged across all climate models. Rates of


warming range from 0.1 to 0.6°C (0.2° to 1.0°F) per decade. Projected changes in annual precipitation, averaged


over all models, are small (+1 to +2%), but some models project an enhanced seasonal cycle with changes toward


wetter autumns and winters and drier summers.


Changes in nearshore sea surface temperatures, though smaller than on land, are likely to substantially exceed


interannual variability, but coastal upwelling changes little. Rates of 21 st century sea level rise will depend on poorly


known factors like ice sheet instability in Greenland and Antarctica, and could be as low as 20th century values


(20cm, 8”) or as large as 1.3m (50”).


1 : Scenarios


1JISAO Climate Impacts Group, University of Washington, Seattle, Washington 981 95-5672

2Oregon Climate Change Research Institute, College of Oceanic and Atmospheric Sciences, Oregon State Univ., Corvallis, Oregon 97331 -5503


CHAPTER 1 : Scenarios 21


AR028117



1 . Global Climate Models


Envisioning global climate in a future with much higher greenhouse


gases requires the use of physically based numerical models of the


ocean, atmosphere, land, and ice, often called global climate models


(GCMs) or climate system models. A common set of simulations using


21 GCMs was coordinated through the Intergovernmental Panel on


Climate Change (IPCC), described in the IPCC 2007 report (Randall et


al. 2007), and archived by the Program for Climate Model Diagnostics


and Intercomparisons (PCMDI). These models typically resolve the


atmosphere with between 6,000 and 15,000 grid squares horizontally, and


with between 12 and 56 atmospheric layers. All GCMs in the PCMDI


archive include a fully resolved global ocean model, usually with higher


resolution than the atmospheric model, and nearly all include models of


sea ice dynamics and models of the land surface. By calculating energy


fluxes between the sun, atmosphere, and surface, these models compute


surface temperature distributions that compare well with observations.


Details of the models, as well as references, can be found in Table 8.1 of


Randall et al. 2007.


Simulations of 21 st century climate require projections of future greenhouse


gases and sulfate aerosols (which reflect sunlight and also promote cloud


formation, thereby offsetting greenhouse gases locally), more than 40 of


which were produced under the auspices of the IPCC (SRES, Nakicenovic


et al. 2000) after considering a wide range of future socioeconomic changes.


Three of these “SRES” scenarios were commonly chosen for forcing the


GCMs: B1, A1B, and A2. The climate forcing of all scenarios, including


B2 and the older IS92a used in the Second Assessment report (Figure 1) is


similar until about 2020 owing primarily to the long lifetime of coal fired


electric power plants and of the major greenhouse gases. A2 produces the


highest climate forcing by the end of the century, but before mid-century,


none of the scenarios is consistently the highest. Because more modeling


groups ran A1B than A2, and since our focus for this study was on mid-

century change, we chose A1B as the higher emissions scenario and B1 as


the low emissions scenario for our analysis of 21 st century PNW climate.


We have analyzed available A2 runs as well, as shown in Figures 8, 11,


and 12, but we emphasize A1B and B1. Though B1 is the lowest of the


IPCC illustrative scenarios, it still produces changes in climate that many


scientists call “dangerous” (Schellnhuber et al. 2006) — a threshold that


a growing number of political leaders have stated their intention to avoid.


At the high end, scenario A1FI (not shown) results in even higher climate


forcing by 2100 than A2 or A1B. Mid-2000s global emissions of CO

2


exceeded even the A1FI scenario (Raupach et al. 2007). Whether these


exceedingly high emissions will continue into the future is beyond our


expertise to judge.


On the PCMDI web site (esg.llnl.gov), all modeling centers provided


simulations of 20th century climate using observed solar, volcanic, and


greenhouse gas forcing. Twenty modeling centers provided simulations of


21 st century climate with the A1B scenario, 19 with B1, and 17 with A2,


for a total of 56 runs. These form the basis for the analysis presented in


most of the other chapters in this assessment report. In some cases several


different model runs were provided for each scenario; we chose Run 1
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except as noted in Appendix A. This set of models is larger than the set


available in 2005 when similar analysis was performed for the Northwest


(Mote et al. 2005, 10 models) and California (Cayan et al. 2007, 12 models


but emphasizing two).


Randall et al. (2007) and CCSP (2008) evaluated the models’ fidelity in


simulating various aspects of global climate, and also calculated each


model’s climate sensitivity. The modeled climate sensitivity is a measure of


the model’s response to doubled CO

2
, and has historically been calculated


in two ways: either the “equilibrium climate sensitivity” or the “transient


climate response” (TCR, ibid.). The equilibrium climate sensitivity is


defined as the globally averaged temperature change in a simulation with


a doubling of CO
2
, in which the simulation is long enough for the global


temperature to reach equilibrium. Because the climate system takes a long


time to come into equilibrium, the calculation of the equilibrium climate


sensitivity was typically performed only in models with a very simple


ocean component, which was standard before the mid-1990s. By the late


1990s, most models included a sophisticated ocean, and running such a


model to equilibrium would require a great deal of computer resources.


The TCR was a more practical metric of models’ sensitivity. The TCR is


defined as the global mean temperature change at the time of CO

2
 doubling


in a simulation in which the CO
2
 increased at 1%/year (roughly IS92a, the


black curve in Figure 1). The range of values of TCR reported by Randall


et al. (2007) was 1.2-2.6°C (their Table 8.2).


2. Model Evaluation: 20th Century Climate of the

Northwest


The domain used in the rest of the chapters in this study is the state of


Washington. However, because the state is represented by only a few grid


points in a typical GCM, for examining the GCMs we use the larger domain


of the Pacific Northwest, defined as the region between 124° and 111°


Figure 1 . Globally averaged radiative

forcing by greenhouse gases and

sulfate aerosols, for four of the six

illustrative scenarios plus the older

IS92a scenario, from IPCC (2001 )

Appendix II.3. In this study we use A1 B

and B1 . Differences between scenarios

grow after about 2020.
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west longitude, 41.5° to 49.5° north latitude: Washington, Oregon, Idaho,


western Montana, and a small slice of adjacent states and British Columbia.


Models have different spatial resolutions, but the number of model grid


points enclosed in this latitude-longitude box is between 6 and 91.


In any prediction exercise the first question should be, how well can the


predictive model simulate the past? In this section we examine the 20


models’ simulation of 20th century climate in the Pacific Northwest, a step


not discussed by Cayan et al. (2007) in their two-model study of climate


change in California. We use a regionally averaged time series formed by


averaging the temperature and precipitation values at all the Northwest grid


points. The reason for such averaging is that variations in model climate on


scales smaller than a few grid cells is not meaningful. Put another way, the


models represent the variations of climate that would occur on a smooth


planet with similar land-sea distributions and large smooth bumps where


Earth has major mountain ranges.


Besides model resolution, another consideration in comparing global


models with observations is that there are different ways to calculate


“observed” regionally averaged temperature and precipitation. A common


approach is to average weather station data into latitude-longitude boxes


or into geographically defined “climate divisions” and combine these areas


into a state or regional average with area weighting; this was how Mote et al.


(2005) compared climate models with observations. The drawback of this


approach is that it does not account for the contribution to a regional average


of high terrain, which has very few weather stations. A better estimate


interpolates (horizontally) and extrapolates (vertically) observations to a


uniform, high-resolution grid (e.g., Hamlet and Lettenmaier 2005). Such


an estimate, however, would be unsuitable for comparing with climate


model output, which lacks the vertical relief.


A third approach is to assimilate observed data into a weather prediction


model at the spatial resolution of climate models, as has been done for the


NCEP/NCAR reanalysis (Kalnay et al. 1996). This approach processes


observations in a manner most similar to a global climate model, or in other


words constrains a model twice a day to be consistent with observations,


and hence it is perhaps the fairest comparison with climate models and


is the one we used previously (Mote and Salathé 2009). However, in this


analysis we use 0.5°-0.5° (latitude-longitude) gridded data of the University


of East Anglia Climatic Research Unit (CRU) version 2.02 (Mitchell et


al. 2004). We area-average the data over the same domain as the climate


models and use monthly means for 1901-2000.


We begin with a comparison of the annual mean difference, or bias, between


models and CRU for 1970-99. Most models have a slight cold bias, and


both the mean and median bias is 1.8°C (3.3°F) (Figure 2). The models


with least bias in annual average temperature are GISS-ER, MIROC-hi,


INMCM3, and CNRM. For precipitation (Figure 3), all models have a


wet bias, and for some the bias exceeds 50%. The mean bias is 6.0 cm/


month (41%). Models with lowest bias are BCCR, GISS_er, HadCM,


PCM1, and CGCM_T47. Note that no model falls in the best five for both


temperature and precipitation, and likewise no model falls in the worst


five for both temperature and precipitation. Comparing these results with


those obtained using NCEP, the NCEP regional average temperature was
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slightly lower and precipitation quite a bit higher (Mote and Salathé 2009)


than the CRU averages, so the average biases were smaller and in the case


of temperature the list of models with lowest bias was different.


The models’ simulated seasonal cycles for the PNW are shown in Figure


3. For temperature, the multi-model average is consistently 1-3°C cooler


than CRU for each month, and six models (led by MIROC-hi) have a


lower root-mean-square (rms) difference from CRU than the multi-model


average. With NCEP, the multi-model mean was consistently within 1°C


of NCEP monthly means and no model had a smaller rms difference.


Figure 2. Differences (biases) between each model’s mean annual (top) temperature and (bottom)

precipitation from gridded CRU data, averaged over the Pacific Northwest, for 1 970-99.


CHAPTER 1 : Scenarios 25


AR028121



For precipitation, all models reproduce the contrast between wet winters


and dry summers, though a few produce summers that are only slightly


drier than winters. The multi-model average is 30-50% wetter than CRU


in most months. Twelve of the models have a lower rms difference from


observed than the multi-model average, with GISS_er the closest and


FGOALS the farthest owing to its very wet summers.


Another facet of 20th century climate that can be evaluated is the trend


in temperature. For the global average, many models simulate a warming


rate similar to the 0.6°C increase in global temperature observed in the


20th century. At the regional scale (Figure 4), the warming rate could be


dominated by changes in atmospheric circulation rather than greenhouse


forcing; nonetheless, eight of the models simulate a warming for 1900-

2000 in the Northwest within 0.2°C of the observed warming of 0.8°C


Figure 3. Mean seasonal cycle for

each climate model from its 20th

century simulation, compared with

the CRU data (black), averaged over

the PNW.  All 20 models are shown

in both panels but the legend is

split between the panels. The black

dashed line shows the average of

all the models, which is quite close

to the observations for temperature

and a bit too wet for precipitation,

but with approximately the right

contrast between wet and dry

seasons.
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during the same period, calculated using regionally averaged, area-

weighted Historical Climate Network data (Mote 2003, updated). We


do not perform the same comparison for precipitation since there is no


evidence that precipitation responded to greenhouse forcing in the 20th

century, either globally or in the zonal mean at these latitudes (Zhang et


al. 2007). The time series of regional precipitation is characterized by


high interannual variability, and the direction of linear trends depend on


the start and end point, unlike temperature, for which linear trends are


robustly upward.


Finally, we examine aspects of 20th century climate that pertain to the


mesoscale modeling that will be reported elsewhere (Salathé et al. 2009,


this report). Since the GCMs provide the global context for the regional


modeling, the GCM fields over the domain of the mesoscale model help


determine the quality of the mesoscale model simulation; in particular the


moisture flux into the region provided by the GCM plays a crucial role in


determining both the amount and the distribution of precipitation by the


regional model.


For each model, we mapped the precipitation, sea level pressure (SLP),


and temperature over roughly the domain for which we ran the mesoscale


model (results of which will be reported elsewhere). Figure 5 shows the


maps for one of these models, the CGCM_T47, compared with the NCEP/


NCAR reanalysis. This model was chosen for display because it scores


the best in comparisons with the reanalysis (Figure 6). In both instances


we show the annual mean for 1950-99. All models reproduce the basic


features of each field: the heavy precipitation over the coastal mountains of


British Columbia, the swath of high precipitation in the lower left corner,


the Aleutian low and Pacific high pressure features in the top panel, and


the low temperatures over the mountainous West and the strong gradient


of sea surface temperature over the eastern Pacific.


An efficient method of quantitatively comparing fields is the Taylor


diagram (Taylor 2000). Values are plotted in radial coordinates with


the radius being the ratio of the modeled area-averaged variance to the


Figure 4. Trend in each model’s

annual mean temperature for the

PNW during the 20th century, and the

observed trend calculated from the

USHCN data. Note that the observed

trend is close to the median trend

from the models.
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observed area-averaged variance, where the variance is calculated at each


grid point using 50 years (1950-99) of monthly data. The angle represents


the spatial correlation between the 50-year mean fields. Figure 6 shows


the Taylor diagram for all 20 models, evaluated over the domain shown in


Figure 5. As with global mean fields (Randall et al. 2007), of the three fields


shown here temperature is best simulated by the models, with a correlation


typically >0.97. Sea level pressure is next best simulated, followed by


precipitation, except that for GISS-ER the SLP is worse than any model’s


precipitation field, owing largely to an Aleutian Low that is much too far to


the west. In the Taylor diagram, the distance of a point to (1,1) represents


the rms error, and we can use this distance to rank the models for each field


and to average the distances to rank the models overall (Fig. 6 lower). Of


all the models, CGCM-T47 (shown in Fig. 5) ranks the best.


3. Projected Changes in Temperature and Precipitation


Some years ago it was common practice in impacts research to present the


results of one or two global climate models. With greater opportunities and


technical abilities for analyzing multiple model simulations, ensembles


are now the state of the science. Climate model simulations provide


Figure 5. Annual mean patterns

from (left column) CGCM-T47

and (right column) NCEP-NCAR

reanalysis, for years 1 950-99. Top

row shows sea level pressure in

hPa, middle row temperature in

Kelvin (273.1 6K=0°C=32°F), and

bottom row precipitation in mm/

day.
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“ensembles of opportunity” (Meehl et al. 2007) whereas what we really


need are statistical distributions of future changes – e.g., estimates of the


likelihood of changes in temperature above a certain value by a certain


date. It is common practice to presume that the distribution of future


changes is well represented by an ensemble of future climate model


projections, though massive distributed climate experiments through


climateprediction.net offer one possible way to characterize statistical


distributions (e.g., Stainforth et al. 2005) and the authors of this chapter


are engaged in a project to produce regional climate simulations using the


climateprediction.net framework. Here, we follow common practice and


present the range of projected changes from model simulations as well as


a weighted average.


The new, weighted average follows the reliability ensemble averaging


“REA” (Giorgi and Mearns 2002) approach. In this approach, the REA value


Figure 6. Evaluation of model

performance over the domain shown in

Figure 5. Top panel shows the correlation

(angle) and ratio of variance (radius)

for each model and each field. The

root-mean-square difference from the

observed field is just the distance on the

diagram. Bottom panel ranks the models

by mean distance for the three fields.

Most models simulate temperature fairly

well, sea level pressure less well, and

precipitation still less well, but there is a

wide range in performance especially for

sea level pressure. The model that scores

the best overall is shown in the right

hand panels in Figure 5.
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for each season and decade is calculated by weighting each model’s output


by its bias and distance from the all-model average. Multi-model averages


in weather forecasting, seasonal forecasting, and climate simulations often


come closer to observations than single models (see Figure 3a above),


and REA may produce better results for the future than an unweighted


average by giving more weight to models that perform well in simulating


20th century climate. For details on the REA calculation, see Appendix B.


The weights assigned to each model for the REA calculations are listed in


Table 1. In this document, “2020s” denotes the 2010-2039 average, 1980s


denotes the 1970-1999 average, and likewise for 2040s and 2080s.


3.1. 21st Century Trends in the Annual Mean


The regionally averaged temperature and precipitation for all B1 and A1B


simulations are shown in Figure 7, along with the REA value for each year.


To calculate the REA weighting, each model’s projected temperature is


smoothed by regressing temperature on the logarithm of the atmospheric


concentration of CO
2
, an approximation (IPCC 2001) of global radiative


forcing (see Figure 1). The same is done for precipitation. This approach,


Figure 7. Smoothed traces in

temperature (top) and precipitation

(bottom) for the 20th and 21 st

century model simulations for

the PNW, relative to the 1 970-99

mean. The heavy smooth curve

for each scenario is the REA value,

calculated for each year and then

smoothed using loess. The top and

bottom bounds of the shaded area

are the 5th and 95th percentiles

of the annual values (in a running

1 0-year window) from the ~20

simulations, smoothed in the same

manner as the mean value. Mean

warming rates for the 21 st century

differ substantially between the

two SRES scenarios after 2020,

whereas for precipitation the range

is much wider than the trend and

there is little difference between

scenarios.
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which is used only to calculate the annual REA values shown in Figure


7, highlights the region’s response to the forcing on century timescales,


masking model interdecadal variability which, while interesting, can


confound the detection of forced change, especially for precipitation. Note


how different the evolution of temperature is after about 2050 for the two


scenarios, owing to the markedly different radiative forcing produced by


different concentrations of greenhouse gases. By the 2080s the REA value


of temperature change is almost 3.4°C (6.1°F) for A1B and only 2.5°C


(4.5°F) for B1. The range just for these two scenarios is 1.5 to 5.8°C (2.8-

9.7°F); other IPCC emissions scenarios would produce more warming by


2100, but B1 produces the least.


The observed trend in regional mean temperature is statistically significant,


that is, it exceeds what would be expected from a time series with no trend


and the same amount of interannual variability (Mote 2003). Likewise,


the projected future trends, even for the very lowest of the scenarios, is


substantially greater than observed in the 20th century.


Model results for changes in precipitation are equivocal (Figure 7). In the


maps of late-21 st century changes in precipitation presented by Christensen


et al. (2007), nearly all climate models project increases in annual mean


precipitation in the northern third of North America and nearly all project


decreases in the southern third, and the PNW lies in the vague area in


between. Consistent with those maps, the annual mean REA change for


the PNW is practically zero throughout the 21 st century, though individual


models produce changes of as much as -10% or +20% by the 2080s. It


should be noted that the REA weighting emphasizes past performance and


Temperature Precipitation


DJF MAM JJA SON annual DJF MAM JJA SON annual


bccr 0.2 0.3 0.3 0.3 0.2 1.0 1.0 1.0 1.0 0.9


ccsm3 0.3 0.5 1.0 0.4 0.4 1.0 1.0 1.0 1.0 1.0


cgcm3.1_t47 0.2 0.4 0.5 0.5 0.3 1.0 1.0 0.7 1.0 0.4


cgcm3.1_t63 0.1 0.2 0.2 0.2 0.1 1.0 1.0 1.0 1.0 1.0


cnrm_cm3 1.0 0.5 1.0 1.0 0.9 1.0 1.0 1.0 1.0 0.7


csiro_3_5 0.2 1.0 0.2 0.6 0.3 1.0 1.0 1.0 1.0 1.0


echam5 0.2 1.0 0.3 0.4 0.3 0.8 1.0 1.0 1.0 0.9


echo_g 0.6 0.3 0.2 1.0 0.3 1.0 1.0 0.6 0.7 0.5


fgoals1_0_g 0.1 0.2 1.0 0.6 0.2 1.0 1.0 1.0 1.0 1.0


gfdl_cm2_0 0.1 0.3 0.1 0.1 0.1 1.0 1.0 0.7 1.0 0.7


gfdl_cm2_1 0.2 0.3 0.5 0.2 0.2 1.0 1.0 1.0 1.0 1.0


giss_aom 0.8 1.0 0.2 0.4 0.4 1.0 1.0 0.4 0.6 0.3


giss_er 0.5 1.0 0.2 1.0 1.0 0.4 0.6 0.6 0.5 0.2


hadcm 0.3 0.6 0.4 0.3 0.3 1.0 1.0 0.4 0.6 0.4


hadgem1 0.1 0.3 0.6 1.0 0.4 0.4 0.7 0.4 0.5 0.2


inmcm3_0 0.6 1.0 0.3 1.0 1.0 1.0 1.0 0.6 0.9 0.4


ipsl_cm4 1.0 0.8 0.3 0.4 0.4 1.0 1.0 1.0 1.0 0.5


miroc3_2_hi 1.0 1.0 0.4 0.8 1.0 0.5 0.8 0.7 0.9 0.2


miroc_3.2 0.3 0.4 1.0 0.7 0.5 0.5 1.0 1.0 0.8 0.3


pcm1 0.2 0.3 0.3 0.4 0.2 1.0 1.0 0.6 1.0 0.4


Table 1 . REA weights (bias factor times distance factor) for the A1 B scenario. Seasonal weights are computed separately and do not

sum to the total.
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Figure 8. Scatterplot of change in annually

averaged PNW temperature and precipitation

for each of the 20 models and 3 SRES

scenarios, for the decades indicated. Green

circles indicate B1 , blue crosses A1 B, and red

diamonds A2. Large bold symbols indicate

the REA value for each scenario and decade.

Model names label the four extremes for each

scenario.
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closeness to the multi-model mean, which are no guarantee of responding


correctly to future greenhouse forcing; but it could also be argued that


the models with poor performance in simulating observed annual mean or


seasonal precipitation may have the storm track at the wrong latitude and


hence respond incorrectly to future greenhouse forcing.


Another way to view the scenarios is to plot the change in temperature on


one axis and the change in precipitation on another axis (Figure 8). Figure


8 roughly shows the sensitivity of the models to forcing, with different


magnitudes of forcing applied by the three SRES scenarios and in different


quantities for the three decades. The ranking of models is similar for each


decade and SRES scenario: HadGEM1, MIROC3_ 2_hi, or CCSM3


tend to be the warmest in each scenario and each decade, IPSL_CM4 or


BCCR the wettest, and so on. Unlike the situation in the global mean,


where the precipitation change and temperature change of models tend to


be correlated, there seems to be no correspondence between temperature


change and precipitation change in the Pacific Northwest. Differences


among the scenarios are small in the 2020s but are substantial by the


2040s. In the coolest scenario, regional temperature rises 0.6°C (1.1°F) by


the 2020s, 0.9°C (1.5°F) by the 2040s, and 1.6°C (2.8°F) by the 2080s. In


the warmest scenario, annually averaged warming is roughly a factor of


three higher than the lowest scenario: 1.9°C (3.3°F) by the 2020s, 2.9°C


(5.2°F) by the 2040s, and 5.4°C (9.7°F) by the 2080s.


3.2. Seasonality of Changes in Climate


For some applications the changes of climate in a given season may


be more important than the changes in annual mean. In this section we


present the changes in climate by season. Figures 9 and 10 show changes


in temperature and precipitation for the 2020s, 2040s, and 2080s relative


to the 1980s. For both B1 and A1B, warming is projected to be largest in


summer. In most seasons B1 has the lowest projected change and A1B the


highest, but this is not always true in the 2020s when the radiative forcing


of the two scenarios is very similar.


On the seasonal scale the most consistent changes in precipitation appear


in the summertime, with a large majority of models (68-90% depending on


decade and SRES scenario) projecting decreases and the REA value reaching


-14% by the 2080s. Some models foresee reductions of as much as 20-40%


in summer precipitation, though these large percentages only translate to


3- 6 cm over the season, 3-6% of the all-model annual mean 20th century


value (102 cm). While small hydrologically in the Northwest, summer


precipitation and its associated cloudiness nonetheless has an impact on


evaporative demand and hence, for example, on urban water use (Palmer


and Hahn 2002) and forest fires (McKenzie et al. 2004).


In winter, by contrast, a majority (50-80% depending on decade and SRES


scenario) of models project increases in precipitation. The REA value


reaches +8% (about 3cm) by the 2080s for the A1B scenario, still small


relative to interannual variability. And although some of the models predict


modest reductions in fall or winter precipitation, some predict very large


increases (up to 42%). Changes of this magnitude would substantially alter


regional hydrology.
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Figure 9. Range (lowest to highest) of

projected changes in temperature for

each season (DJF=winter, etc.), relative

to the 1 970-99 mean. In each pair of

box- and-whiskers, the left one is for

SRES scenario B1  and the right is A1 B;

circles are individual model values.

Box-and-whiskers plots indicate 1 0th

and 90th percentiles (whiskers), 25th

and 75th percentiles (box ends), and

median (solid middle bar) for each

season and scenario. Not all values are

visible due to symbol overlap. Printed

values are the weighted Reliability

Ensemble Average of all GCMs for the

season and scenario.
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Figure 10. As in Figure 9, but for

precipitation. The height of the bars

indicates actual water precipitation

but the percentages are calculated

with respect to a reference value

for that season, so that -1 1% in JJA

is much less than -1 1% in DJF. The

reference values for the extremes are

that model’s 20th century mean for

that season (or annual mean), and for

the REA average the reference is the

all-model 20th century value. Unlike

for temperature, for any season

some models project increases and

some project decreases, though the

vast majority project decreases for

summer and increases for winter by

the 2080s


CHAPTER 1 : Scenarios 35


AR028131



For some applications one may want to choose a few GCM scenarios to


represent a “medium” (closest to REA average), “worst case”, and “best


case”. The worst and best case will depend very much on application, and


certain seasons may matter most. For example, the worst case scenario


might be the one with the largest winter or spring warming and small or


negative change in winter precipitation: for 2040s, MIROC 3.2 A1B has


2.8°C (5.0°F) spring warming, only 3% increase in spring precipitation and


no change in winter precipitation. The best case may be BCCR-B1 with a


17% increase in winter precipitation, 8% increase in spring precipitation,


and warming of only 0.9°C (1.6°F) in winter and 0.5°C (0.9°F) in spring.


Another dimension of impacts centers on how warm-dry summers are: the


mean is +2.1°C (3.8°F) and -12% for A1B, worst-case +4.4°C (7.9°F) and


-30% in HadCM, and best-case +0.85°C (1.5°F) and +7% for PCM1 B1.


Figure 1 1 . Simulated annual cycle of sea

surface temperature (SST) averaged over

1 970-99 for all available models. Grey

shading represents ±1  standard deviation

of the multimodel ensemble about the

1 970-99 mean, shown as a solid black

line, and the three curves above the grey

shaded area show the means for 2030-
2059 for the three scenarios. Though

small, the 1 .2°C warming is substantially

outside the 20th century variability.


Figure 12. As in Fig. 1 1  but for along-
shore wind stress, which changes very

little in the future scenarios.
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4. Changes in Coastal Water Properties


Coastal sea surface temperature (SST) helps determine the biological and


physical conditions of the marine environment and the estuaries of the


Northwest. Each of the 20 models examined here has a detailed ocean


model with higher spatial resolution than the atmosphere model, and


simulates SST. Owing however to the still relatively coarse resolution of


the ocean model and the complexity of nearshore circulations, simulated


coastal SST and especially its seasonal cycle may bear little resemblance to


observed SST. Figure 11 shows the mean annual cycle for the 1970-99 and


2030-59 periods for coastal grid points between 46° and 49°N. Modeled


change in SST is about 1.2°C (2.2°F), somewhat less than for the PNW


land areas (2.0°C, 3.6°F) but a significant change relative to the small


interannual variability of the ocean.


Along the west coast of each continent, summertime equatorward winds


pull water offshore and water must upwell from depth to replace it. This


nutrient-rich water serves as the basis for very high biological productivity.


Our earlier analysis of two climate models (Mote and Mantua 2002)


indicated little change in coastal upwelling in any of the major regions of


upwelling. For the 20 models used in this study, the mean change is also


quite small (Figure 12).


Another important aspect of change in the coastal ocean is local sea level


rise (SLR), which is produced by the combined effects of global sea level


rise and local factors such as vertical land deformation (e.g., tectonic


movement, isostatic rebound) and seasonal ocean elevation changes due to


atmospheric circulation effects. We previously (Mote et al. 2008) reviewed


available projections of these factors for the coastal waters of Washington


and provided low, medium, and high estimates of local SLR for 2050 and


2100. These are summarized here.


The Fourth Assessment Report of the IPCC projects global SLR over the


course of this century to be between 18 and 38 cm (7-15”) for their lowest


(B1) emissions scenario, and between 26 and 59 cm (10-23”) for their


highest emissions scenario. Based on the current science, our “medium”


estimate of 21 st century SLR in Washington is that in Puget Sound, local


SLR will closely match global SLR. On the northwest Olympic Peninsula,


very little relative SLR will be apparent due to rates of local tectonic uplift


that currently exceed projected rates of global SLR. On the central and


southern Washington coast, the number of continuous monitoring sites


with sufficiently long data records is small, adding to the uncertainty of


SLR estimates for this region. Available data points suggest, however, that


uplift is occurring in this region, but at rates lower than that observed on


the NW Olympic Peninsula.


The application of SLR estimates in decision making will depend


on location, time frame, and risk tolerance. For decisions with long


timelines and low risk tolerance, such as coastal development and public


infrastructure, users should consider low-probability high-impact estimates


that take into account, among other things, the potential for higher rates


of SLR driven by recent observations of rapid ice loss in Greenland and


Antarctica, which though observed were not factored into the IPCC’s


latest global SLR estimates. Combining the IPCC high emissions scenario
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with 1) higher estimates of ice loss from Greenland and Antarctica, 2)


seasonal changes in atmospheric circulation in the Pacific, and 3) vertical


land deformation, a low-probability high-impact estimate of local SLR


for the Puget Sound Basin is 55 cm (22”) by 2050 and 128 cm (50”) by


2100. Low-probability, high impact estimates are smaller for the central


and southern Washington coast (45 cm [18”] by 2050 and 108 cm [43”]


by 2100), and even lower for the NW Olympic Peninsula (35 cm [14”] by


2050 and 88 cm [35”] by 2100) due to tectonic uplift.


5. Downscaling Methods


Two approaches are commonly used to map coarse-scale climate model


output to finer-scale local detail: statistical downscaling and regional


modeling. Statistical downscaling methods use the empirical relationship


between an observed climatology, say precipitation, at the higher


resolution and coarse-scale model fields, like the altitude of the 700 hPa


pressure level, from global climate models. The empirical relationship


is derived using the observations as predictand and a simulation from a


global climate model for the observed period, and may use a number of


modeled fields as predictors in the empirical relationship. For example,


often atmospheric circulation and moisture variables are used to downscale


regional precipitation.


For this project, we applied statistical downscaling based on 1/16-degree


gridded historic observed temperature and precipitation (Elsner et al. 2009,


this report) using two methods. The first is a simple “delta method” where


the observed daily temperature and precipitation from the period 1970-

1999 are perturbed to produce fine-scale projections of the future (e.g.


Loáiciga 2000; Lettenmaier and Gan 1990), by computing monthly mean


changes in average PNW temperature and percent change in precipitation


for the 2020s, 2040s, and 2080s. We then apply these perturbations, or


deltas, to the 1/16-degree historic data to form future climate change


scenarios. At each grid point, the regional temperature delta is added to


the observed daily maximum and minimum temperatures and the regional


precipitation delta is multiplied by the daily precipitation. In this way,


we produce 30-year daily temperature and precipitation sequences and


spatial patterns that are physically consistent but modified by different


scenarios of climate change for each future time period and each global


climate model. This method has the advantage of preserving the observed


sequence of weather and natural climate variability, which allows easy


comparison to the past. However, if anthropogenic influence on climate


includes a change in higher statistical moments – variance, skewness – this


method will miss such changes.


The second and more sophisticated statistical downscaling method is based


on methods described by Wood et al. (2002), Widmann et al. (2003), and


Salathé (2005). This approach preserves the observed statistical properties


of temperature and precipitation during the 20th century while allowing


these to change in future projections. As in Wood et al., the monthly-mean


global climate model data are bias-corrected. The bias-corrected climate


model is then downscaled to 1/16-degree grid spacing. For precipitation,


the “dynamical scaling” method presented in Widmann et al. (2003) is


used. This method accounts for the effects of both large-scale precipitation
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processes and changes in atmospheric circulation on the local precipitation.


For temperature, a simple spatial disaggregation is applied (Wood et al.


2002). Finally, the monthly mean data are disaggregated to daily time


steps using the method described in Salathé (2005).


The important differences between the transient statistical downscaling


and delta method are 1) the trends in the climate projection are preserved


and 2) modes of climate variability and shifts in climate variability in


the global model are preserved in the transient downscaling. In some


applications, for example in water resource planning, these issues are not


important and make the interpretation of results more difficult (Salathé et


al. 2007). In other applications, for example in modeling ecologic systems,


climate trends and variability are important to consider.


Regional climate models are another tool for downscaling and provide a


physically-based representation of the interactions between the large-scale


atmospheric features simulated by global models and the fine-scale regional


features such as terrain, land-use, and water bodies. These interactions can


produce local rates of change of temperature and precipitation that are


quite different from those simulated by global climate models (Salathé


et al. 2008). Salathé et al (2009) present results from a regional climate


model applied to downscale two global climate models.


The relative merits of downscaling methods for the Pacific Northwest are


discussed in Salathé et al. (2007). Statistical downscaling has an important


advantage over a regional model in that it is computationally efficient and


allows the consideration of a large set of climate scenarios. Over the next


50 years, projections differ much more among various models than among


emissions scenarios. Therefore, to fully account for this uncertainty, a


multi-model ensemble is the most appropriate approach and statistical


downscaling is well suited to many applications that require projections


only of temperature and precipitation. Statistical methods can also tune


the statistical properties of climate simulations, eliminating biases and


adjusting the variance, to better match observed statistics. Regional climate


models, however, can better represent the local responses to climate


change, which may be critical to applications in regions of complex terrain


and land-water contrasts. Regional simulations also open up a broad range


of impacts applications that are not suited to statistical downscaling, such


as air quality modeling (Avise et al. 2006).


6. Discussion and Conclusions


Most GCMs reproduce key features of observed PNW climate including


the sharp contrast between wet winters and dry summers, the 20th century


warming of about 0.8°C, and the mean atmospheric circulation over the


North Pacific. These successes provide some confidence in their projected


changes in future climate. For the SRES scenarios examined here, all


models produce annual mean warming of at least 0.1°C per decade with


some prospect of stabilizing climate by 2100 in the B1 scenario. For the


A1B scenario the warming by the 2080s could be as high as 5.7°C (9.7°F)


according to one model.  Even the mean warming rate of 0.3°C (0.5°F) per


decade could produce profound changes in the hydrology and environment


of the Northwest, as discussed in later chapters.
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Annual mean precipitation changes little when averaged over all the models,


but individual models produce substantially wetter or drier futures. For all


of the 30-year means considered here, a majority of models produce wetter


winters and drier summers, though the average shifts are small and not


statistically significant.


Changes in the coastal zone include large projected warming relative to


20th century variability but little change in coastal along-shore wind stress


and coastal upwelling.


Other important aspects of climate change are more suitable for


investigation by regional models, which can better resolve daily-scale as


well as fine spatial-scale variability. Leung et al. (2004) using a regional


model forced by an earlier version of the PCM found reductions (not


significant) in precipitation west of the Cascades, especially in winter, but


increases throughout the PNW in extreme daily precipitation. Salathé et


al. (2009, this report) provide additional analysis of changes at smaller


scales.
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Appendices


Appendix A


In a few instances the data available from Run 1 appeared not to be


complete (e.g., missing variable or decade) so we used Run 2. The models


for which this occurred were CCSM3 A2 and B1, and PCM1 B1.


Appendix B


Reliability ensemble averaging (REA) uses a bias factor and a distance


factor to weight each model’s output. Each factor is calculated by averaging


quantities over the Pacific Northwest, for each season and for the annual


mean, following these steps.


Compute the difference δ between the model mean and CRU mean,
1. 

for the 1970-99 period.


Calculate the tolerance factor ε to allow for variability of 30-year
2. 

means relative to the century timescale. First, using regionally


averaged CRU data for 1901-2000, detrend (subtract the linear


fit from) the 20th century time series, then calculate the standard


deviation ε of the running 30-year mean. The tolerance factor is


used in computing both the bias factor and the distance factor.


Calculate the bias factor. For models with a δ less than ε, the bias
3. 

factor is 1; if δ is greater than ε, the bias factor is reduced to ε/δ.


Looking now at 214. st century simulations, regress the quantity in


question (e.g., annual mean temperature) on the log of CO
2
 (see


Figure 1). For purposes of calculating the distance factor, take the
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value of the resulting fit at year 2045 minus the value at year 2000,


di, for model i. This is the only step in which we depart from the


method of Giorgi and Mearns, and we do so in order that each


model has a single weighting factor for each of the time periods


considered (2020s, 2040s, 2080s).


Calculate the all-model mean value d of the individual model
5. 

distances d
i
. Then weight each model d

i
 by its distance from the


mean d and recompute the all-model mean d. Only one or two


iterations is needed to converge.


Calculate the distance factor in the same manner as the bias factor:
6. 

for di less than ε, the distance factor is 1; for d
i

 greater than ε, the


distance factor is ε/d

i
.


For each season, decade, scenario, and variable, compute an REA
7. 

value by summing over all available models the product of the


model’s projected change, its bias factor, and its distance factor.
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