Comprehensive Management Plan for Puget Sound Chinook:

Harvest Management Component

$$
\begin{gathered}
\text { PUGET SOUND INDIAN TRIBES } \\
\text { AND }
\end{gathered}
$$

THE WASHINGTON DEPARTMENT OF FISH AND WILDLIFE

APRIL 12, 2010

Table of Contents

TABLE OF CONTENTS I
LIST OF FIGURES IV
LIST OF TABLES V
EXECUTIVE SUMMARY 1

1. OBJECTIVES AND PRINCIPLES 4
1.1 Scope of the Plan 4
1.2 Objectives 5
2. FISHERIES AND JURISDICTIONS 9
2.1 Southeast Alaska 9
2.2 British Columbia 10
2.3 Washington Ocean 11
2.4 Puget Sound 12
Tribal Ceremonial and Subsistence Fisheries 12
Commercial Chinook Fisheries 13
Commercial Sockeye, Pink, Coho, and Chum Fisheries 14
Recreational Fisheries 17
2.5 Non-Landed Fishery Mortality 18
2.6 Regulatory Jurisdictions affecting Washington fisheries 20
Puget Sound Salmon Management Plan (U.S. v. Washington) 20
Pacific Salmon Treaty 21
Distribution of Fishing Mortality 22
Trends in Exploitation Rates 22
3. POPULATION STRUCTURE - AGGREGATION FOR MANAGEMENT 24
3.1 Population Structure 24
3.2 Management Units 25
3.3 Population Categories 27
4. MANAGEMENT THRESHOLDS AND EXPLOITATION RATE CEILINGS29
4.1 Upper Management Thresholds 29
4.2 Low Abundance Thresholds 29
4.3 Exploitation Rate Ceilings 31
Derivation of Exploitation Rate Ceilings 32
5. IMPLEMENTATION 34
5.1 Rules for Allowing Fisheries 34
5.2 Rules That Control Harvest Levels 35
5.3 Response to Critical Status 37
Implementing CER ceilings in response to northern fisheries interceptions 38
Discretionary conservation measures. 39
5.4 Pre-season Planning 39
5.5 Compliance with Pacific Salmon Treaty Chinook Agreements 40
5.6 Regulation Implementation 41
5.7 In-season Management 42
5.8 Enforcement 42
6. CONSERVATIVE MANAGEMENT 44
ESA Conservation Criteria 44
6.1 Harvest Objectives Based on Natural Productivity 44
Accounting for Uncertainty and Variability 45
6.2 Protection of Individual Populations 46
Management Units in Critical Status 48
6.3 Exploitation Rates and Escapement Trends 49
6.4 Equilibrium Exploitation Rates. 50
6.5 Recovery Goals 54
6.6 Harvest Constraint Cannot Effect Recovery 56
6.7 Protecting the Diversity of the ESU 58
6.8 Summary of Conservation Measures 59
7. MONITORING AND ASSESSMENT 61
7.1 Catch and Fishing Effort 61
7.2 Spawning Escapement 62
7.3 Abundance and Exploitation Rates 62
7.4 Smolt Production and Survival 64
7.5 Annual Management Review 64
7.6 Retrospective Performance Assessment 65
7.7 Marine-Derived Nutrients from Salmon 66
7.8 Selective Effects of Fishing 68
8. AMENDMENT OF THE HARVEST MANAGEMENT PLAN 69
9. GLOSSARY 70
10. LITERATURE CITED 72
APPENDIX A: MANAGEMENT UNIT STATUS PROFILES 80
Nooksack River Management Unit Status Profile. 81
Skagit River Management Unit Status Profiles 94
Stillaguamish River Management Unit Status Profile 134
Snohomish River Management Unit Status Profile. 141
Lake Washington Management Unit Status Profile 160
Green River Management Unit Status Profile 173
White River Management Unit Status Profile 179
Puyallup River Fall Chinook Management Unit Status Profile 186
Nisqually River Chinook Management Unit Status Profile 192
Skokomish River Management Unit Status Profile. 199
Mid-Hood Canal Management Unit Status Profile 204
Dungeness Management Unit Status Profile 209
Elwha River Management Unit Status Profile 214
Western Strait of Juan de Fuca Management Unit Status Profile 220
APPENDIX B: TRIBAL MINIMUM FISHERIES REGIME 224

List of Figures

Figure 1. Commercial net and troll catch of Chinook in Puget Sound fisheries, 1980-2008
(WDFW LIFT database). 14
Figure 2. Recreational salmon catch in Puget Sound marine areas, 1985-2007 (WDFW CRC estimates, 2007 data are preliminary) 17
Figure 3. Recreational Chinook harvest in Puget Sound freshwater areas, 1988-2007 (WDFW Catch Record Card estimates, excludes jacks; 2007 data are preliminary). 18
Figure 4. Total exploitation rate for Skagit, Stillaguamish, and Snohomish summer/fall Chinook management units, 1983-2008 (based on 2009 FRAM validation run). 23
Figure 5. Total exploitation rate for Nooksack, Skagit, and White spring Chinook management units, 1983-2008 (based on 2009 FRAM validation run). 23
Figure 6. The equilibrium exploitation rate, at each escapement level, for Skagit spring Chinook. . 51Figure 7. The equilibrium exploitation rate, at each escapement level, for Skagit summer/fallChinook.52
Figure 8. Natural and natural-origin spawner abundance in the North Fork Stillaguamish River. 57
Figure 9. Productivity (adult recruits) of North Fork Stillaguamish summer Chinook under currentand recovered habitat ($\mathrm{PFC}+$) conditions. Beverton-Holt functions derived from habitat analysisusing the EDT method.57

List of Tables

Table 1. Exploitation rate ceilings, expressed as total, southern US (SUS), or pre-terminal (PTSUS)exploitation rates, and upper management and low abundance thresholds, for Puget Sound Chinookmanagement units.3
Table 2. Chinook catch in southeast Alaska fisheries, 1999-2008 (CTC 2009) 9
Table 3. Chinook catch in British Columbia commercial troll and tidal sport fisheries, 1999-2008 (CTC 2009) 10
Table 4. Commercial troll and recreational landed catch of Chinook in Washington Areas 1-4, 1999-2009 (PFMC 2009) 12
Table 5. Net harvest of sockeye, pink, and Chinook salmon in Washington fisheries under Fraser Panel Management, 2000-2008 15
Table 6. Commercial net harvest of pink salmon from Nooksack, Skagit, Snohomish, and South Puget Sound terminal areas, 2001-2007. 15
Table 7. Landed coho harvest in Puget Sound net fisheries, 2003-2008. Regional totals include freshwater catch. 16
Table 8. Landed chum harvest in Puget Sound commercial fisheries, 2003-2008. Regional totals include freshwater catch. 16
Table 9. Chinook incidental mortality rates applied to commercial and recreational fisheries in Washington. 19
Table 10. 2000-2006 average distribution of fishery mortality, based on coded-wire tag recoveries, for Puget Sound Chinook indicator stocks (CTC 2008). 22
Table 11. Natural management units for Puget Sound Chinook and their component populations. The production category of each population is noted in parentheses. 26
Table 12. Exploitation rate ceilings, low abundance thresholds and critical exploitation rate ceilings for Puget Sound Chinook management units 30
Table 13. Southern U.S. fishery exploitation rates for Puget Sound Chinook (post-season FRAM estimates A. Hagen-Breaux WDFW, pers comm December 22, 2010). 49
Table 14. Fifteen-year (1994-2008) trends in natural spawning escapement for Puget Sound Chinook populations. 50
Table 15. Escapement levels and recruitment rates for Puget Sound Chinook populations, at MSH and at equilibrium, under recovered habitat conditions. 55

Executive Summary

This Harvest Management Plan will guide the Washington co-managers in planning annual harvest regimes, as they affect listed Puget Sound Chinook salmon, for management years 2010-2014. Harvest regimes will be developed to achieve stated objectives (i.e., total or Southern U.S. exploitation rate ceilings, and / or spawning escapement goals) for each of fifteen management units. This Plan describes how these guidelines are applied to annual harvest planning.

The Plan guides the implementation of fisheries in Washington, under the co-managers' jurisdiction, but also accounts for harvest impacts of other fisheries that impact Puget Sound Chinook, including those in Alaska and British Columbia, to assure that conservation objectives for Puget Sound management units are achieved. Accounting total fishery-related mortality includes incidental harvest in fisheries directed at other salmon species, and non-landed mortality.

The fundamental intent of the Plan is to enable harvest of strong, productive stocks of Chinook, and other salmon species, and to minimize harvest of weak or critically depressed Chinook stocks. Providing adequate conservation of weak stocks will necessitate foregoing some harvestable surplus of stronger stocks.

The Exploitation Rate (ER) ceilings stated for each management unit (Table 1) are not target rates. Pre-season fishery planning will develop a fishing regime that does not exceed the ER ceilings for each management unit. Projected exploitation rates that emerge from pre-season planning will, for many management units, be lower their respective ceiling rates. While populations are rebuilding, annual harvest objectives will be intentionally conservative, even for relatively strong and productive populations.

To further protect populations, low abundance thresholds (Table 1) are set above the critical level associated with demographic instability or loss of genetic integrity. If escapement is projected to below this threshold, harvest impacts will be further constrained, by lower Critical Exploitation Rate ceilings, to increase escapement.

Exploitation rate ceilings for some management units are based on estimates of recent productivity for component populations. Productivity estimates (i.e., recruitment and survival) are subject to uncertainty and bias, and harvest management is subject to imprecision. The derivation of ER ceilings considers specifically these sources of uncertainty and error, and manages the consequent risk that harvest rates will exceed appropriate levels. The productivity of each management unit will be periodically re-assessed, and harvest objectives modified as necessary.

Criteria for exemption of state / tribal resource management plans from prohibition of the 'take' of listed species, are contained under Limits 4 and 6 of the salmon 4(d) Rule (50 CFR 223:42476). The 4(d) criteria state that harvest should not impede the recovery of populations whose abundance
exceeds their critical threshold, and that populations with critically low abundance should be guarded against further decline, such that harvest will not significantly reduce the likelihood of survival and recovery of the ESU.

The abundance and productivity of all Puget Sound Chinook populations is constrained by habitat conditions. Recovery to substantially higher abundance is primarily dependent on restoration of habitat function. Therefore, the harvest limits established by this Plan must be complemented by the other elements of the Comprehensive Recovery Plan that address degraded habitat and management of hatchery programs.

Table 1. Exploitation rate ceilings, expressed as total, southern US (SUS), or pre-terminal (PTSUS) exploitation rates, and upper management and low abundance thresholds, for Puget Sound Chinook management units.

Management Unit	Exploitation Rate Ceiling	Upper Management Threshold	Low Abundance Threshold	Critical Exploitation Rate Ceiling
Nooksack North Fork South Fork		$\begin{aligned} & 4,000 \\ & 2,000 \\ & 2,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,000^{1} \\ & 1,000^{1} \end{aligned}$	7\% / 9\% SUS ${ }^{3}$
Skagit summer / fall Upper Skagit Sauk Lower Skagit	50\%	14,500	$\begin{gathered} 4,800 \\ 2200 \\ 400 \\ 900 \end{gathered}$	15% SUS even years 17% SUS odd years
Skagit spring Upper Sauk Upper Cascade Suiattle	38\%	2,000	$\begin{aligned} & 576 \\ & 130 \\ & 170 \\ & 170 \\ & \hline \end{aligned}$	18\% SUS
Stillaguamish North Fork Summer South Fk \& MS Fall	25\%	$\begin{aligned} & 900^{1} \\ & 600^{1} \\ & 300^{1} \end{aligned}$	$\begin{aligned} & 700^{1} \\ & 500^{1} \\ & 200^{1} \end{aligned}$	15\% SUS
Snohomish Skykomish Snoqualmie	21\%	$\begin{aligned} & 4,600^{1} \\ & 3,600^{1} \\ & 1,000^{1} \end{aligned}$	$\begin{gathered} 2,800^{1} \\ 1745{ }^{1} \\ 521^{1} \end{gathered}$	15\% SUS
Lake Washington Cedar River	20\% SUS	1,680	200	10\% PT SUS
Green	15\% PT SUS	5,800	1,800	12\% PT SUS
White River spring	20\%	1,000	200	15\% SUS
Puyallup fall	50\%	500 (South Prairie Cr.)	500	12\% PT SUS
Nisqually	65-56-47\% ${ }^{4}$			
Skokomish	50\%	3,650	1,300 ${ }^{2}$	12\% PT SUS
Mid-Hood Canal	15\% PT SUS	750	400	12\% PT SUS
Dungeness	10\% SUS	925	500	6\% SUS
Elwha	10\% SUS	2,900	1,000	6\% SUS
Western JDF	10\% SUS	850	500	6\% SUS

${ }^{1}$ natural-origin spawners.
${ }^{2}$ Skokomish LAT is 800 natural spawners and/or 500 escapement to the hatchery (see Appendix A).
${ }^{3}$ Nooksack SUS ER will not exceed 7\% in 4 out of 5 years
${ }^{4}$ Nisqually ER ceiling 65% for $2010-2011$; 56\% for 2012 - 2013; 47% for 2014

1. Objectives and Principles

This Harvest Management Plan (Plan) establishes management guidelines for annual harvest regimes, as they affect Puget Sound Chinook, for management years 2010-2011 through 2014 2015. The Plan guides the implementation of fisheries in Washington, under the co-managers' jurisdiction, and considers the total harvest impacts of salmon- and steelhead-directed fisheries on Puget Sound Chinook, including the impacts of salmon fisheries in Alaska, British Columbia, and Oregon. The Plan's objectives can be stated succinctly as intent to:

> Ensure that fishery-related mortality will not impede rebuilding of natural Puget Sound Chinook salmon populations, consistent with the capacity of properly functioning habitat, to levels that will sustain fisheries, enable ecological functions, and are consistent with treaty-reserved fishing rights.

This Plan will constrain harvest to the extent necessary to enable rebuilding of natural Chinook populations in the Puget Sound evolutionarily significant unit (ESU), provided that habitat capacity and productivity are protected and restored. It includes explicit measures to conserve and rebuild abundance, and preserve diversity among all the populations that make up the ESU. The ultimate goal of this plan is to promote rebuilding of natural productivity so that natural Chinook populations will be sufficiently abundant and resilient to perform their natural ecological function in freshwater and marine systems, provide related cultural values to society, and sustain commercial, recreational, ceremonial, and subsistence harvest.

The parties to this Plan include the Lummi, Nooksack, Swinomish, Upper Skagit, Sauk-Suiattle, Tulalip, Stillaguamish, Muckleshoot, Suquamish, Puyallup, Nisqually, Squaxin Island, Skokomish, Port Gamble S'Klallam, Jamestown S'Klallam, Lower Elwha Klallam, and Makah tribes, and the Washington Department of Fish and Wildlife.

The co-managers and the National Marine Fisheries Service (NMFS) have adopted a Recovery Plan for Puget Sound Chinook (NMFS 2007, Ruckleshaus et al. 2005) that states abundance and productivity goals for each population, which are the ultimate objectives for all aspects of recovery planning. The Recovery Plan addresses all factors affecting the survival and recovery, including the management of fisheries and hatchery production, and conservation and restoration of freshwater and marine habitat, all of which are necessary to achieve recovery goals.

1.1 Scope of the Plan

The Plan guides the implementation of fisheries in Washington, under the co-managers' jurisdiction, and considers the total harvest impacts on Puget Sound Chinook of salmon fisheries in Washington,

Oregon, British Columbia, and Alaska, and the low incidental impacts of tribal and recreational steelhead fisheries in Puget Sound.

This Plan defines allowable levels of harvest-related mortality on Puget Sound Chinook. Constraints on fishing are primarily focused on Treaty Indian and non-Indian commercial, tribal ceremonial and subsistence, and recreational salmon fisheries that occur in the marine waters of Puget Sound, the Strait of Juan de Fuca (east of Cape Flattery), Rosario Strait and Georgia Strait, Hood Canal, and in rivers and streams draining into these waters.

Ocean salmon fisheries that operate in Washington coastal Areas 1 - 4B, from May through September, involve harvest or encounters with Puget Sound Chinook. The Secretary of Commerce, through the Pacific Fisheries Management Council (PFMC), is responsible for management of these fisheries. As participants in the PFMC / North of Falcon planning processes, the Washington comanagers consider the impacts of these ocean fisheries on Puget Sound Chinook, and may request the PFMC to modify them, to achieve management objectives for Puget Sound Chinook (PSSMP Section 1.3).

Fisheries mortality in Alaska, Oregon, and British Columbia is also accounted to assess, as completely as possible, total fishing mortality on Puget Sound Chinook. Mortality of Puget Sound Chinook in other Washington commercial and recreational fisheries, e.g. those directed at rockfish, halibut, shellfish, or resident trout, is not directly accounted.

Steelhead-directed fisheries in Puget Sound, including tribal and recreational fisheries in marine and freshwater areas, involve very low incidental mortality of Chinook. The 2004 Harvest Plan included tribal steelhead fisheries. These impacts are accounted as accurately as possible, and included in estimating exploitation rates on each Puget Sound management unit.

1.2 Objectives

To promote recovery, the Plan has the following objectives:

- Conserve the productivity, abundance, spatial structure, and diversity of the populations that make up the Puget Sound ESU.
- Achieve compliance with the ESA jeopardy standard, as stated in the salmon 4(d) rule, that exempts harvest from the prohibition on take if it does not "appreciably reduce the likelihood of survival or recovery" of the ESU (NMFS 2005a).
- Reduce the risks associated with harvest management imprecision and uncertainties in estimates of the productivity and survival of Chinook populations.
- Provide opportunity to harvest surplus hatchery Chinook from Puget Sound and the Columbia River, as well as sockeye, pink, coho, and chum salmon.
- Account all sources of landed and non-landed fishery-related mortality, in all fisheries, when assessing total exploitation rates.
- Adhere to the principles of the Puget Sound Salmon Management Plan (PSSMP), and other legal mandates pursuant to U.S. v. Washington (384 F. Supp. 312 (W.D. Wash. 1974)), and U.S. v Oregon, which provide the basis for co-management of the salmon resource by the treaty tribes and the State of Washington and mandates equitable sharing of harvest opportunity among tribes, and among treaty and non-treaty fishers.
- Meet the fishery management obligations defined by the Treaty between the Government of Canada and the Government of the United States of America concerning Pacific salmon (the Pacific Salmon Treaty (PST)).
- Ensure exercise of Indian fishing rights established by treaties, and further defined by federal courts in U.S. v Washington and related sub-proceedings.

Abundance and productivity of Puget Sound Chinook populations is currently between 10% and 25% of historical levels. For the purposes of this harvest Plan, we consider all populations to be threatened, and at risk of extinction, if appropriate actions aren't taken. Therefore, harvest of these populations must be limited as part of a comprehensive recovery plan that addresses impacts from harvest, hatchery practices, and degraded habitat.

Responsible management of salmon fisheries requires accounting of all sources of fishery-related mortality in all fisheries. This is a complex task since directed, incidental, and non-landed mortality must all be taken into account, and since Puget Sound Chinook are affected by fisheries in a large geographical area extending from southeast Alaska to the Oregon coast. Management tools have been continually refined to better quantify harvest rates and catch distribution for Puget Sound Chinook.

The management regime will be guided by the principles of the Puget Sound Salmon Management Plan (PSSMP), and other legal mandates pursuant to U.S. v. Washington (384 F. Supp. 312 (W.D. Wash. 1974)), and U.S. v. Oregon, in equitable sharing of harvest opportunity among tribes, and among treaty and non-treaty fishers.

The Pacific Salmon Treaty defines limits to harvest in fisheries that take Puget Sound Chinook. The principles of the original abundance-based Chinook management framework, as described under the Chinook Chapter to Annex IV of the PST in 1999, remain in effect, but the 2008 Agreement placed further constraints on certain fisheries in Southeast Alaska and British Columbia. Constraints on

Individual Stock Based Management (ISBM) fisheries in the southern U.S. are unchanged in the 2008 Agreement, and a procedure for determining compliance with that obligation during pre-season planning is defined in this Plan.

Most of the harvest-related Chinook mortality in fisheries governed by this Plan will occur in fisheries directed at abundant hatchery production, sockeye and pink salmon (including stocks originating in the Fraser River), and coho salmon. Consequently, management plans and agreements pertaining to stocks from regions other than Puget Sound, and for species of salmon other than Chinook, are taken into account in developing this plan.

This Plan sets limits on annual fishery-related mortality for each Puget Sound Chinook management unit. The limits are expressed either as exploitation rate ceilings, or natural escapement thresholds. Exploitation rate ceilings are expressed either as rates on all coastal fisheries, southern U.S. fisheries, or pre-terminal southern U.S. fisheries. For some populations, terminal fishery management measures are specified that will achieve stated natural escapement goals. Exploitation rate ceilings for management units comprised of more than one population are defined with the intent of rebuilding each component population. Implementing this Plan requires assessing the effects of fisheries (i.e. the comparison of total production with the resulting escapement) on individual populations.

The Plan asserts a specific role for harvest management in rebuilding the Puget Sound ESU: to ensure that sufficient mature adults escape fisheries to utilize currently available spawning and rearing habitat to the optimum degree. But for most populations, until habitat constraints to productivity are alleviated, and potentially harmful hatchery practices are remedied, the Plan's constraints on harvest may only assure that population abundance will remain stable (i.e., persist). For some populations, the Plan's constraints on harvest are designed to provide levels of natural escapement that exceed the number associated with maximum sustainable yield (MSY) under current habitat conditions. Providing these higher escapements will improve estimates of population productivity and will lead to increased production if habitat conditions improve or other survival factors are favorable. The Plan requires that harvest restrictions be implemented to increase escapements for those populations that are projected to be at or near critical abundance. For a small number of populations in critical status, due to major survival impediments associated with habitat condition or the limited impact of fisheries under the management jurisdiction of the co-managers, the constraints on harvest mortality imposed by this Plan may not reduce their risk of extinction.

For some management units with quantified productivity, the Plan's objectives directly incorporate the effects of uncertainty associated with deriving and implementing exploitation rate ceilings. Furthermore, the Plan commits the co-managers to ongoing monitoring, research and analysis, to better quantify and determine the significance of uncertainty and management error, and to modify the Plan as necessary to minimize associated risks.

Concern over the declining status of Puget Sound and Columbia River Chinook has motivated conservation initiatives under the management authorities of the Pacific Salmon Commission and the PFMC. This Plan is designed to complement the conservation efforts of those management authorities and will continue to evolve to provide a coordinated, coast-wide fishery management response to address the conservation of Puget Sound Chinook.

2. Fisheries and Jurisdictions

Puget Sound Chinook contribute to fisheries along the coast of British Columbia and Alaska, in addition to those in coastal waters of Washington and Puget Sound. Therefore, their management involves the local jurisdictions of the Washington co-managers, along with the jurisdictions of the State of Alaska, the Canadian Department of Fisheries and Oceans, the Pacific Salmon Commission (PSC), and the Pacific Fisheries Management Council (PFMC).

2.1 Southeast Alaska

Chinook are harvested in commercial, subsistence, personal use, and recreational fisheries throughout Southeast Alaska (SEAK). From 1999 through 2008, total landed catch ranged from 236,500 to 499,300 (Table 2). The SEAK fishery is managed to achieve the annual all gear PSC allowable catch through plans established by the Alaska Board of Fisheries.

Commercial fisheries employ troll, gillnet, and purse seine gear. Commercial troll landings accounted for an average of 66% of total harvest from 1999-2008, while net gear accounted for 14%. The majority of troll catch occurs during the summer season, although winter and spring seasons are also scheduled from October through April. The summer season usually opens July 1st targeting Chinook, then shifts to a coho directed fishery in August. Gillnet and seine fisheries within State waters target pink, sockeye, and chum salmon, with substantial incidental catch of coho, and relatively low incidental catch of Chinook.

Table 2. Chinook catch in southeast Alaska fisheries, 1999-2008 (CTC 2009)

Year	Troll	Net	Sport	Total
1999	146,219	32,720	72,081	251,020
2000	158,717	41,400	63,173	263,290
2001	153,280	40,163	72,291	265,734
2002	325,308	31,689	69,537	426,534
2003	330,692	39,374	69,370	439,436
2004	354,658	64,038	80,572	499,268
2005	338,411	71,618	86,575	496,604
2006	282,315	70,384	85,794	438,493
2007	268,149	55,884	82,848	406,881
2008	151,926	46,149	38,371	236,446

Total Chinook landed in SEAK recreational fisheries ranged from 38,400 to 86,600 from 1999-2008, accounting for an average of 20% of total landed catch. The recreational fishery occurs primarily in June, July, and August. The majority of the effort is associated with non-resident fishers, and is targeted at Chinook salmon. Fishing is concentrated in the vicinity of the major population centers
of Ketchikan, Petersburg, Sitka, and Juneau, but also occurs in more remote areas like the coast of Prince of Wales Island.

Chinook from the Columbia River, Oregon coast, Washington coast, west coast of Vancouver Island (WCVI), and northern B.C. contribute significantly to harvest in Southeast Alaska. Most Puget Sound Chinook stocks are subjected to very low or zero mortality in Southeast Alaska, but there are notable exceptions. On average since 2000, 30% of the harvest mortality of Elwha, 60% of Hoko, 11% of Stillaguamish summer, and 27\% of Skagit summer Chinook occurred in Alaska (CTC 2008).

2.2 British Columbia

In British Columbia (B.C.), troll fisheries occur on the northern coast and on the west Coast of Vancouver Island (WCVI). Commercial and test troll fisheries directed at pink salmon in northern areas, and sockeye on the WCVI and the southern Strait of Georgia incur relatively low incidental Chinook mortality. Net fisheries, including gillnet and purse seine gear in B.C. are primarily directed at sockeye, pink, and chum salmon, but also incur incidental Chinook mortality. Conservation measures have limited Chinook retention in many areas.

Chinook catch in the Northern B.C. and WCVI troll fisheries increased dramatically in 2002 (Table 3), resulting in increased exploitation rates for many Puget Sound Chinook management units in these fisheries. Skagit summer/falls, and Nooksack / Samish, South Puget Sound, Hood Canal, and Strait of Juan de Fuca fall stocks were most impacted by increasing B.C. fisheries, as can be seen in CWT distribution data presented in the management unit profiles in Appendix A.

Table 3. Chinook catch in British Columbia commercial troll and tidal sport fisheries, 1999 2008 (CTC 2009)

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Northern BC troll	56,499	9,800	13,100	103,038	137,357	167,508	174,806	151,485	83,235	52,147
WCVI troll	5,307	63,400	77,491	132,921	151,826	174,128	148,798	109,004	94,921	95,170
Georgia Strait troll	80	270	0	506	17	17	0	0	0	0
WCVI outside sport	31,106	38,038	40,179	32,115	23,995	42,496	53,928	37,905	46,229	50,559
QCI \& No. coast sport	41,927	30,700	41,400	55,100	54,300	74,000	68,800	64,500	61,000	55,470
Central coast sport	10,300	7,400	7,650	7,330	8,385	10,677	9,017	9,400	6,130	2,909
JDF, GS, JS sport	66,209	49,442	58,481	79,394	54,196	67,189	54,461	45,856	50,032	34,829

2.3 Washington Ocean

Treaty Indian and non-treaty commercial troll fisheries directed at Chinook, coho, and pink salmon, and recreational fisheries directed at Chinook and coho salmon are scheduled from May through September, under co-management by the WDFW and Treaty Tribes. The Pacific Fisheries Management Council (PFMC), pursuant to the Sustainable Fisheries Act (1996), oversees annual fishing regimes in these areas. Tribal fleets operate within the confines of their usual and accustomed fishing areas. Principles governing the co-management objectives and the allocation of harvest benefits among tribal and non-Indian users, for each river of origin, were developed under Hoh v Baldrige (522 F.Supp. 683 (1981)). The declining status of Columbia River origin Chinook stocks has been the primary constraint on coastal fisheries, though consideration is also given to attaining allocation objectives for troll, terminal net, and recreational harvest of coastal origin stocks from the Quillayute, Queets, Quinault, Hoh, and Grays Harbor systems. These fisheries primarily target Columbia River Chinook (CTC 2002). Puget Sound Chinook make up a low percentage of the catch, with South Sound and Hood Canal stocks exploited at a slightly higher rate than North Sound and Strait of Juan de Fuca Chinook.

The ocean troll fishery has been structured, in recent years, as Chinook-directed fishing in May and June, and Chinook- and coho-directed fishing from July into mid-September, to enable full utilization of Treaty and non-Treaty Chinook and coho quotas. These quotas (i.e. catch ceilings) are developed in a pre-season planning process that considers harvest impacts on all contributing stocks. Time, area, and gear restrictions are implemented to selectively harvest the target species and stock groups. In general, the Chinook harvest occurs 10 to 40 miles offshore, whereas the coho fishery occurs within 10 miles off the coast, but annual variations in the distribution of the target species cause this pattern to vary. The majority of the Chinook catch has, in recent years, been caught in Areas 3 and 4 (which, during the summer, includes the westernmost areas of the Strait of Juan de Fuca - Areas 4B). In the last five years, troll catch has ranged from 31,000 to 101,000 (Table 4).

Recreational fisheries, in Washington Ocean areas, are also conducted under specific quotas for each species, and allocations to each catch area. WDFW conducts creel surveys at each port to estimate catch and keep fishing impacts within the overall quotas. Most of the recreational effort occurs in Areas 1 and 2, adjacent to Ilwaco and Westport. Generally recreational regulations are not species directed, but certain time / area strata have had Chinook non-retention imposed, as conservation concerns have increased, and to enable continued opportunity based on more abundant coho stocks. Since 1999, recreational Chinook catch in Areas 1 - 4 has ranged from 8,500 to 57,800 (Table 4).

Puget Sound Chinook stocks comprise less than 10 percent of coastal troll and sport catch (see below for more detailed discussion of the catch distribution of specific populations). The contribution of Puget Sound stocks is higher in northern areas, along the coast. The exploitation rate of most individual Chinook management units in these coastal fisheries is, in most years, less than one percent. However, these exploitation rates vary annually in response to the varying abundance of commingled Columbia River, local coastal, and Canadian Chinook stocks.

Table 4. Commercial troll and recreational landed catch of Chinook in Washington Areas 1 4, 1999-2009 (PFMC 2009)

	Troll			
Year	Non-treaty	Treaty	Recreational	Total
1999	17,456	27,704	9,887	55,047
2000	10,269	7,789	8,478	26,536
2001	21,229	30,480	22,974	74,683
2002	53,819	40,301	57,821	151,941
2003	56,202	35,418	34,183	125,803
2004	35,372	65,903	24,907	126,182
2005	35,066	46,909	36,369	118,344
206	16,769	31,241	10,667	58,677
2007	14,268	26,683	8,944	49,895
2008	8,636	21,990	14,635	45,261

Amendment 14 to the PFMC Framework Management Plan restricts the direct oversight of conservation to those Chinook stocks whose exploitation rate in fisheries under the jurisdiction of the PFMC (i.e., coastal ocean fisheries between the borders of Mexico and British Columbia, including Washington catch areas $1-4$) have exceeded two percent, in a specified base period. However, the PFMC must also align its harvest objectives with conservation standards required for salmon ESUs, listed under the Endangered Species Act. Additionally, this Plan, along with the Puget Sound Salmon Management Plan, commits the co-managers to explicit consideration of coastal fishery impacts, to ensure that the overall conservation objectives are achieved for all Puget Sound Management Units. This requires accounting all impacts on all management units, even in fisheries where contribution is very low.

2.4 Puget Sound

Tribal Ceremonial and Subsistence Fisheries

Indian tribes schedule ceremonial and subsistence Chinook fisheries to provide basic nutritional benefits to their members, and to maintain the intrinsic and essential cultural values imbued in traditional fishing practices and spiritual links with the natural resources. The magnitude of ceremonial and subsistence harvest of Chinook is small relative to commercial and recreational harvest, and is carefully monitored, particularly where it involves critically depressed stocks.

Commercial Chinook Fisheries

Commercial salmon fisheries in Puget Sound, including the U.S. waters of the Strait of Juan de Fuca, Rosario Strait, Georgia Strait, embayments of Puget Sound, and Hood Canal, are managed by the tribes and WDFW under the Puget Sound Salmon Management Plan. Several tribes conduct commercial troll fisheries directed at Chinook salmon in the Strait of Juan de Fuca. These fisheries include winter troll season in areas 4B, 5 and 6C, and a spring/summer season in Area 4B, which is managed concurrently with the ocean fishery in neighboring areas. Annual harvest over the past 5 years has ranged from 400 to over 20,600 in the winter fishery, and from 100 to 4,500 in the Area 4B spring/summer fishery.

Commercial net fisheries, using set and drift gill nets, purse or roundhaul seines, beach seines, and reef nets are conducted throughout Puget Sound, and in the lower reaches of larger rivers. These fisheries are regulated, by WDFW (non-treaty fleets) and by individual tribes (tribal fleets), with time/area and gear restrictions. In each catch area, harvest is focused on the target species or stock according to its migration timing through that area. Management periods are defined as that interval encompassing the central 80% of the migration timing of the species, in each management area. Because the migration timings of different species overlap, the actual fishing schedules may be constrained during the early and late portion of the management period to reduce impacts on nontarget species. Incidental harvest of Chinook also occurs in net fisheries directed at sockeye, pink, and coho salmon.

Due to current conservation concerns, Chinook-directed commercial fisheries are of limited scope and most are directed at abundant hatchery production in terminal areas, including Bellingham /Samish Bay and the Nooksack River, Tulalip Bay, Elliott Bay and the Duwamish River, Lake Washington, the Puyallup River, the Nisqually River, Budd Inlet, Chambers Bay, Sinclair Inlet, and southern Hood Canal and the Skokomish River. Purse or roundhaul seine vessels operate in Bellingham Bay and Tulalip Bay, although these are primarily gillnet fisheries. A small-scale, onshore, marine set gillnet fishery is conducted in the Strait of Juan de Fuca and on the coast immediately south of Cape Flattery. Small-scale gillnet research or evaluation fisheries may also occur to acquire management and research data in the Skagit River, Elliott Bay and the Duwamish River, Puyallup River, and Nisqually River. Abundance assessment fisheries typically involve two or three vessels making a prescribed number of sets at specific locations, one day per week, during the Chinook migration period.

Total commercial harvest of Chinook in Puget Sound fell from levels in excess of 200,000 in the 1980's, to less than 100,000 in all years from 1993 to 2000 (Figure 1). Harvest has increased slightly in recent years, averaging 115,000 since 2000.

Figure 1. Commercial net and troll catch of Chinook in Puget Sound fisheries, 1980 - 2008 (WDFW LIFT database).

Commercial Sockeye, Pink, Coho, and Chum Fisheries

Net fisheries directed at Fraser River sockeye are conducted annually, and at Fraser River pink salmon in odd-numbered years, in the Strait of Juan de Fuca, Georgia Strait, and the Straits and passages between them (i.e., catch areas 7 and 7A). Nine tribes and the WDFW issue regulations for these fisheries, as participants in the Fraser River Panel, under Pacific Salmon Treaty Annexes. Annual management plans include sharing and allocation provisions, but fishing schedules are developed based on in-season assessment of the abundance of early, early summer, summer, and late-run sockeye stocks and pink salmon.

Management has constrained sockeye harvest in recent years to account for lower survival and prespawning mortality of sockeye. Harvest averaged 292,000 between 2000 and 2008, ranging from 12,000 to 711,000 (Table 5). Fraser pink salmon return in odd years, with odd-year catches averaging 475,000 over the same period. Pink salmon harvest has also been somewhat constrained due to concerns for co-migrating late run sockeye. Most of the pink salmon harvest is taken by purse seine gear. Specific regulations to reduce incidental Chinook mortality, including requiring release of all live Chinook from non-treaty purse seine fishery hauls, have reduced incidental contribution total catch. All fishing-related Chinook mortality is accounted.

Table 5. Net harvest of sockeye, pink, and Chinook salmon in Washington fisheries under Fraser Panel Management, 2000-2008

	Species	2000	2001	2002	2003	2004	2005	2006	2007	2008
Strait of Juan de Fuca	sockeye	41,974	34,973	45,600	36,536	15,359	6,153	25,417	2,213	34,427
	pink	91	7,117	173	50,103	522	5,862	165	410	570
	Chinook	640	974	1,074	908	628	181	938	83	4,547
Rosario and Georgia Straits	sockeye	434,166	216,232	404,551	233,345	176,738	200,524	685,194	9,771	24,444
	pink	218	474,512	21	811,126	135	335,013	223	474,868	49
	Chinook	950	965	2,228	4,817	5,086	4,356	5,232	2,582	27

Commercial fisheries directed at Cedar River sockeye stocks occur in Shilshole Bay, the Ship Canal, and Lake Washington. Smaller scale commercial fisheries targeting Baker River sockeye occur in the Skagit River. The Cedar River stock does not achieve harvestable abundance consistently, but significant fisheries did occur in 2000, 2002, 2004, and 2006. These fisheries generally involved low incidental Chinook mortality.

Commercial fisheries directed at Puget Sound-origin pink salmon occur in terminal marine areas and freshwater in Bellingham Bay and the Nooksack River, Skagit Bay and Skagit River, and Possession Sound / Port Gardner (Snohomish River system), when abundance is projected to exceed escapement requirements. Because of the timing overlap of pink and Chinook salmon in the Nooksack region, pink harvest is a bycatch taken in the fall Chinook fishery that occurs after August 1, after the bulk of the pink run has passed. New pink-targeted opportunities occurred in 2007 in Marine Area 10 (Seattle Area), Elliott Bay, and the Duwamish, corresponding to the large increase in abundance of pinks in the Green and Puyallup River systems in recent years. Terminal pink fisheries can involve significant incidental catch of Chinook, due to the large overlap in run timing of the two species. Catches in each of the terminal areas have been variable since 2001 (Table 6), and largely reflect the patterns of pink abundances returning to those areas during that time.

Table 6. Commercial net harvest of pink salmon from Nooksack, Skagit, Snohomish, and South Puget Sound terminal areas, 2001-2007.

Terminal area	2001	2003	2005	2007
Bellingham Bay/Nooksack	12,437	1,637	2,198	674
Skagit Bay/River	199,868	218,285	20,964	5,998
Stillaguamish/Snohomish	86,735	155,418	21,138	21,230
South Puget Sound	658	3,758	2,362	13,904

Commercial fisheries directed at coho salmon also occur around Puget Sound and in some rivers. Coho are also caught incidentally in fisheries directed at Chinook, pink, and chum salmon. From 2003-2008, total landed coho catches have been relatively stable between 200,000 and 300,000, with
a larger catch of 563,000 occurring in 2004 (Table 7). The largest catches occur in South/Central Puget Sound, with in-river fisheries targeting hatchery coho in the Green and Puyallup, and marine fisheries targeting net pen production in deep South Sound.

Table 7. Landed coho harvest in Puget Sound net fisheries, 2003-2008. Regional totals include freshwater catch.

Region	2003	2004	2005	2006	2007	2008
Strait of Juan de Fuca	6,744	11,850	5,450	3,285	5,789	1,940
Georgia \& Rosario Strait	9,293	22,912	3,543	676	1,679	822
Nooksack-Samish	43,472	90,039	35,814	21,817	34,958	31,124
Skagit	23,150	35,638	19,817	5,511	17,059	8,635
Stillaguamish-Snohomish	10,616	88,892	36,522	31,892	29,979	40,661
South Puget Sound	128,174	225,561	144,061	145,384	85,968	112,351
Hood Canal	33,225	86,433	60,150	58,201	48,060	40,087
Total	256,677	563,329	307,362	268,772	225,499	237,628

Marine and freshwater fisheries targeting fall chum salmon occur in many areas of Puget Sound in most years. Since 2003, chum harvests in Puget Sound have been large, ranging from 735,000 to more than $2,000,000$ (Table 8). Due to the later migration timing of fall chum, most Chinook caught incidentally in marine areas are immature 'blackmouth'. Incidental Chinook catch is low.

Table 8. Landed chum harvest in Puget Sound commercial fisheries, 2003-2008. Regional totals include freshwater catch.

Region	2003	2004	2005	2006	2007	2008
Strait of Juan de Fuca	683	5,406	2,075	4,700	6,890	6,091
Georgia \& Rosario Strait	81,632	166,170	77,536	105,838	27,316	75,402
Nooksack-Samish	20,336	35,347	19,084	36,738	26,905	10,788
Skagit	19,015	19,117	18,335	106,380	17,873	7,416
Stillaguamish-Snohomish	41,193	164,695	44,165	199,588	190,736	84,570
South Puget Sound	449,151	751,430	324,302	611,479	703,524	360,217
Hood Canal	939,101	965,619	248,902	581,880	514,574	477,614
Total	$1,551,111$	$2,107,784$	734,399	$1,646,603$	$1,487,818$	$1,022,098$

Recreational Fisheries

Recreational salmon fisheries occur in marine Areas 5-13 and freshwater areas, under regulations promulgated by the Washington Department of Fish and Wildlife. In marine areas, the principal target species are Chinook and coho salmon. Since the mid-1980's the total annual marine harvest of Chinook has declined steadily from levels in excess of 100,000 in the late 1980's, to an average of 28,200 since 2002 (Figure 2). Marine area coho harvest has also decreased from an average of over 220,000 in the late 1980 's, to less than 70,000 since 2002.

Figure 2. Recreational salmon catch in Puget Sound marine areas, 1985-2007 (WDFW CRC estimates, 2007 data are preliminary)

Freshwater recreational catch has shown an increasing trend since the late 1980's (Figure 3), likely in response to constraints placed on marine opportunity, and to the increasing abundance of some stocks.

Recreational Chinook catch has been increasingly constrained in mixed-stock areas to avoid overharvest of weak Puget Sound populations. Time and area closures and mark-selective fisheries have been implemented to limit impacts on weak wild stocks. Recreational fishery mortality is accounted in exploitation rate estimates for Chinook and coho. In recent years, WDFW has allocated the majority of Chinook and coho mortalities in non-treaty fisheries to the recreational sector.

Figure 3. Recreational Chinook harvest in Puget Sound freshwater areas, 1988-2007 (WDFW Catch Record Card estimates, excludes jacks; 2007 data are preliminary).

2.5 Non-Landed Fishery Mortality

In all fisheries, each type of commercial and recreational gear exerts 'non-landed' mortality on Chinook. The rates currently used to assess non-landed mortality are shown below (Table 9). Hook-and-line fisheries are regulated by size limits, recreational bag limits, non-retention periods, and mark-selective periods. A proportion of the fish not kept will die from hooking trauma. A large body of relevant literature expresses a broad range of hooking mortality rates. Rates are assumed to be higher for commercial troll than for recreational gear, and higher for small fish.

As bag limits on recreational fisheries have decreased, and the use of mark-selective fishery strategies has expanded, the non-landed proportion of total mortality has risen accordingly. The Washington co-managers and the PFMC have periodically reviewed the literature, and adjusted the non-landed mortality rates associated with hook-and-line fisheries, so that fisheries simulation models used in management planning express the best available science. For hook and line gear, the release mortality (or "shaker mortality") rate refers to the percentage of fish which are brought to the boat and released, because they are below the legal size limit, or because regulations preclude retention (due to species or adipose mark status). Drop-off mortality rate is calculated as a
proportion of the landed catch, but refers to fish that are hooked but escape before being brought to the boat.

Table 9. Chinook incidental mortality rates applied to commercial and recreational fisheries in Washington.

Fishery	Release Mortality	Drop-off / Drop-out
Ocean Recreational	14%	5%
Ocean Troll - barbless hooks	26%	5%
- barbed hooks	30%	5%
Puget Sound Recreational	$>22 "-10 \%$	5%
	$<22 "-20 \%$	5%
Puget Sound Freshwater Recreational	10%	0%
		Pre-terminal- 2\%
	Skagit Bay 52\%	Terminal marine -
		3%
		freshwater - 0\%
Purse Seine	immature fish - 45\%	0%
	mature fish - 33\%	0%
Beach Seine		
Skagit Bay pink fishery	50%	0%
Reef net	0%	

The various types of net gear also exert non-landed mortality. Studies to quantify rates are difficult to design and implement, so few reference data are available. Gillnet dropout is one source of nonlanded mortality that results from fish killed as a result of encountering gear, but dropping out of the gear or succumbing to predation by marine mammals prior to successful collection. Few studies have been conducted to estimate the rates of encounter or the rates of mortality for fish encountered. Currently, the dropout incidental mortality effect is estimated assuming the effect is 3% of landed catch in pre-terminal areas and 2% in terminal fisheries. Purse seine regulations for the non-treaty fleet require a strip of wide-mesh net at the surface of the bunt to reduce the catch of immature Chinook. Immature Chinook caught by seine gear are assumed to have a higher mortality than mature Chinook. Non-treaty seine fishers have been required to release all Chinook in all areas of Puget Sound (7B/7C hatchery-Chinook directed fishery excluded) in recent years. Mortality rates vary due to a number of factors, but studies have shown that two-thirds to half of Chinook survive seine capture, particularly if the fish are sorted immediately or allowed to recover in a holding tank before release. Because catch per set is typically small for beach seine and reef net gear, it is assumed Chinook may be released without harm. Conservatively higher release mortality is assumed for some beach seine fisheries (e.g. the Skagit pink fishery). Research continues into net
gear that reduces release mortality, with promising results from recent tests of tangle nets (Vander Haegen et al. 2004). In any case, non-landed mortality is accounted by managers, according to the best available information, to quantify the mortality associated with harvest.

2.6 Regulatory Jurisdictions affecting Washington fisheries

Fisheries planning and regulation by the Washington co-managers are coordinated with other jurisdictions, in consideration of the effects of Washington fisheries on Columbia River and Canadian Chinook stocks. Pursuant to U.S. v Washington (384 F. Supp. 312), the Puget Sound Salmon Management Plan (1985) provides fundamental principles and objectives for comanagement of salmon fisheries.

The Pacific Salmon Treaty, originally signed in 1984, commits the co-managers to equitable crossborder sharing of the harvest and conservation of U.S. and Canadian stocks. The Chinook Chapter of the Treaty, which is implemented by the Pacific Salmon Commission, establishes ceilings on Chinook exploitation rates in southern U.S. fisheries. The thrust of the original Treaty, and subsequently negotiated agreements for Chinook, was to constrain harvest on both sides of the border in order to rebuild depressed stocks.

The PFMC is responsible for setting harvest levels for coastal salmon fisheries in Washington, Oregon, and California. The PFMC adopts the management objectives of the relevant local authority, provided they meet the standards of the Sustainable Fisheries Act. The Endangered Species Act has introduced a more conservative standard for coastal fisheries, when they significantly impact listed stocks.

Puget Sound Salmon Management Plan (U.S. v. Washington)

The Puget Sound Salmon Management Plan (PSSMP) remains the guiding framework for jointly agreed management objectives, allocation of harvest, information exchange among the co-managers, and processes for negotiating annual harvest regimes. At its inception, the Plan implemented the court order to provide equal access to salmon harvest opportunity to Indian tribes, but its enduring principle is to "promote the stability and vitality of treaty and non-treaty fisheries of Puget Sound... and improve the technical basis for ...management." It defined management units (see Chapter III), and regions of origin, as the basis for harvest objectives and allocation, and established maximum sustainable harvest (MSH) and escapement as general objectives for all units. The PSSMP also envisioned the adaptive management process that motivated this Plan. Improved technical understanding of the biological parameters of populations, and assessment of the actual performance of management regimes in relation to management objectives and the status of stocks, will result in continuing modification of harvest objectives.

Pacific Salmon Treaty

In 1999, negotiations between the U.S. and Canada resulted in a new, comprehensive Chinook agreement, which replaced the previous fixed-ceiling regime with a new approach based on the annual abundance of stocks. It included increased specificity on the management of all fisheries affecting Chinook, and sought to address the conservation requirements of a larger number of depressed stocks, including some that are now listed under the ESA.

The 1999 agreement established exploitation rate guidelines or quotas for fisheries subject to the PST based on the forecast abundance of key Chinook stocks. This regime was in effect for the 1999 through 2008 period. Fisheries are classified as aggregate abundance-based management regimes (AABM) or individual stock-based management regimes (ISBM). The agreement defines "an AABM fishery (as) an abundance-based regime that constrains catch or total adult equivalent mortality to a numerical limit computed from either a pre-season forecast or an in-season estimate of abundance, and the application of a desired harvest rate index expressed as a proportion of the 19791982 base period" (PSC 2001).

Three fishery complexes were designated for management as AABM fisheries: 1) the SEAK sport, net and troll fisheries; 2) the Northern British Columbia troll (statistical areas 1-5) and the Queen Charlotte Islands sport (statistical areas 1-2); and 3) the WCVI troll (statistical areas 21,23-27, and 121-127) and sport, for specified areas and time periods. The estimated abundance index each year is computed by a formula specified in the agreement for each AABM fishery. Table 1 of the Chinook chapter of the new Annex IV specified the target catch levels for each AABM fishery as a function of that estimated abundance index.

All Chinook fisheries subject to the Treaty that are not AABM fisheries are classified as ISBM fisheries, including freshwater Chinook fisheries. As provided in the new agreement, "an ISBM fishery is an abundance-based regime that constrains to a numerical limit the total catch or total adult equivalent mortality rate within the fisheries of a jurisdiction for a naturally spawning Chinook stock or stock group." For these fisheries the agreement specifies that Canada and the U.S. shall reduce the total adult equivalent mortality rate by 36.5% and 40% respectively, relative to the 1979-1982 base period, for a specified list of indicator stocks. In Puget Sound these include Nooksack early, Skagit summer/fall and spring, Stillaguamish, Snohomish, Lake Washington, and Green stocks.

If such reductions do not result in the biologically based escapement objectives for a specified list of natural-origin stocks, ISBM fishery managers must implement further reductions across their fisheries as necessary to meet those objectives or as necessary to equal, at least, the average of those reductions that occurred during 1991-1996. Although the specified ISBM objectives must be achieved to comply with the agreement, the affected managers may choose to apply more constraints to their respective fisheries than are specifically mandated by the agreement. The annual distribution of allowable impacts is left to each country's domestic management processes.

In 2008, the Pacific Salmon Commission recommended, and the governments endorsed, a new bilateral agreement for the conservation and sharing of harvest sharing of the salmon resource to the governments of the United States and Canada. The new agreement took effect in 2009. The biggest change in the new agreement is a reduction to the catch rate limits in the 1999 agreement, resulting in reductions of 15% for Southeast Alaska AABM fisheries, and 30\% for West Coast Vancouver Island AABM fisheries. As a result exploitation rates for most Puget Sound stocks will decline 2 3% in these fisheries.

Distribution of Fishing Mortality

A significant portion of the fishing mortality on many Puget Sound Chinook stocks occurs outside the jurisdiction of this plan, in Canadian and/or Southeast Alaskan fisheries, based on recoveries of coded-wire tags from indicator stocks (Table 10). Of the Puget Sound indicator stocks, more than half of total mortality of Nooksack spring, Skagit spring, Skagit summer/fall, and Hoko fall Chinook occurs in Alaska and Canada. Washington troll fisheries account for smaller portions of total exploitation, accounting for more than 10% for Skokomish and South Puget Sound stocks. Puget Sound net and U.S. sport fisheries account for the majority of mortality on Samish, and Nisqually fall stocks.

Table 10. 2000-2006 average distribution of fishery mortality, based on coded-wire tag recoveries, for Puget Sound Chinook indicator stocks (CTC 2008).

Indicator stock	Alaska\%	Canada	US troll $\%$	US net\%	US sport $\%$
Nooksack spring fingerling	9.6%	81.2%	2.5%	2.0%	4.7%
Samish fall fingerling	0.8%	31.3%	7.4%	50.7%	9.8%
Skagit spring fingerling	6.2%	69.4%	2.0%	2.3%	20.2%
Skagit spring yearling	1.1%	58.3%	1.4%	2.7%	36.5%
Skagit summer/fall fingerling	27.4%	59.9%	0.9%	5.3%	6.4%
Stillaguamish fall fingerling	14.6%	52.0%	2.3%	4.7%	26.5%
South Puget Sound fall fingerling	0.9%	39.0%	10.2%	24.7%	25.2%
Nisqually fall fingerling	0.2%	16.2%	7.3%	47.3%	29.1%
Skokomish fall fingerling	1.7%	40.2%	10.7%	16.5%	30.9%
Hoko fall fingerling	61.6%	34.6%	1.6%	0.0%	2.2%

Note: Stillaguamish average of 2000, 2001 and 2006; White average of 2000 and 2006.

Trends in Exploitation Rates

Post-season FRAM ('validation') runs, which incorporate catch and stock abundance from postseason assessments, are available for management years 1983-2008, and can show trends in the total exploitation rate of Puget Sound Chinook over that time. For these models, post-season abundances (total recruitment) are estimated from the observed terminal run sizes by using pre-terminal expansion factors estimated using CWT-based preterminal exploitation rates, or from fishing effort scalars.

For Category 1 populations, fisheries management has reduced exploitation rates steadily since the 1980's. Total exploitation rates on Skagit, Stillaguamish, and Snohomish units have declined dramatically since the 1980's, with recent averages roughly one-third to one-half of earlier values (Figure 4). Exploitation rates on Nooksack, Skagit, and White river spring Chinook stocks have shown similar declines over the same time period (Figure 5).

Figure 4. Total exploitation rate for Skagit, Stillaguamish, and Snohomish summer/fall Chinook management units, 1983-2008 (based on 2009 FRAM validation run).

Figure 5. Total exploitation rate for Nooksack, Skagit, and White spring Chinook management units, 1983-2008 (based on 2009 FRAM validation run).

3. Population Structure - Aggregation for Management

This section describes the population structure of the Puget Sound Chinook ESU, and how populations of similar run timing are aggregated for the purposes of harvest management in some river systems.

3.1 Population Structure

The Puget Sound Chinook ESU comprises 22 extant populations originating in 12 river basins (Table 11). This Plan also includes management objectives for Chinook originating in the Hoko River, in the western Strait of Juan de Fuca. The intent of this Plan is to manage fishery-related risk, in order to conserve genetic and ecological diversity of populations throughout the ESU.

Puget Sound Chinook were delineated into stocks in the Salmon and Steelhead Stock Inventory (WDF et al. 1993); the 2001 Harvest Plan was generally based on the SASSI stock designation. To assist their delineation of historical population structure, the TRT (Ruckelshaus et al. 2006) examined juvenile freshwater life history, age of maturation, spawn timing, and physiographic characteristics of watersheds. This Plan conforms to the Puget Sound Technical Recovery Team's (TRT) population delineation (Ruckelshaus et al. 2006) that was developed as part of recovery planning.

Puget Sound Chinook populations are classified, according to their migration timing, as spring, summer, or fall Chinook, but specific return timing toward their natal streams, entry into freshwater, and spawning period varies significantly within each of these 'races'. Run timing is an adaptive trait that has evolved in response to specific environmental and habitat conditions in each watershed. Fall Chinook are native to, or produced naturally, in the majority of systems, including the lower Skagit, Snoqualmie, Cedar, Green, Puyallup, Nisqually, Skokomish, mid-Hood Canal, and Hoko rivers, and in tributaries to northern Lake Washington. Summer runs originate in the Elwha, Dungeness (spring/summer), upper Skagit, lower Sauk, Stillaguamish, and Skykomish rivers. Spring (or 'early') Chinook are produced in the North / Middle and South Forks of the Nooksack River, the upper Sauk River, Suiattle River, and Cascade River in the Skagit basin, and the White River in the Puyallup basin.

Puget Sound Chinook populations primarily exhibit subyearling ('ocean type') smolt life history. A small (less than 5 percent) proportion of juvenile fall Chinook and a larger and variable proportion of juvenile spring and summer Chinook in some systems rear in freshwater for 12 to 18 months before emigrating. Expression of this 'stream-type' life history is believed to be influenced more by environmental factors than genotype (Myers et al. 1998).

The oceanic migration of Puget Sound Chinook typically proceeds north into the coastal waters of British Columbia, and for some stocks, extends to southeast Alaska. For many stocks a large
proportion of their harvest occurs in the southern waters of British Columbia (i.e., in Georgia Strait and the west coast of Vancouver Island). Adult Chinook become sexually mature at the age of three to six years; most Puget Sound Chinook mature at age-3 or 4. A small proportion of males mature precociously during their freshwater residence, or after shorter ocean residence.

Puget Sound Chinook are genetically distinct and adapted to the local freshwater and marine environments of this region. Retention of their unique characteristics depends on maintaining healthy and diverse populations. A central objective of the Plan is to assure that the abundance of each population is conserved, at a level sufficient to protect its genetic integrity.

Allozyme-based analysis of the genetic structure of the Puget Sound ESU indicates six distinct population aggregates - Strait of de Fuca, Nooksack River early, Skagit and North Fork Stillaguamish rivers, South Fork Stillaguamish and Snohomish rivers, central and southern Puget Sound and Hood Canal late, and White River early (Ruckelshaus et al. 2006). The genotype of populations in South Sound and Hood Canal reflect use of Green River-origin broodstock used for large-scale hatchery production. Indigenous early- and/or late-timed populations were extirpated in the Snohomish, Puyallup, Nisqually, Skokomish, and Elwha systems; genetic analyses of extant returns to these systems do not detect continued native genotypes.

This Plan does not establish harvest objectives where Chinook return solely due to local hatchery production or as strays from other systems (e.g., the Samish River, Gorst Creek and other streams draining into Sinclair Inlet, Deschutes River, and several independent tributaries in South Puget Sound).

3.2 Management Units

This Plan aggregates populations that exhibit similar run timing into management units, for the purpose of managing harvest (Table 11). This is due largely to the spatial and temporal commingling of these populations throughout their harvest distribution. For these management units, a technical means for planning or implementing differential harvest of single populations does not exist.

Prior to the conclusion of U.S. v Washington in 1974, almost all fisheries on Puget Sound salmon were conducted in marine waters, with no explicit management units or escapement goals. The Boldt decision, however, mandated that fish be allowed to return to tribal fishing areas near the mouths of Puget Sound rivers. This requirement, combined with the need for improved stock-bystock management required the delineation of management units and the development of spawning escapement goals. The Puget Sound Salmon Management Plan (PSSMP) established the basis for management units, escapement goals, management periods, and other elements of an effective harvest management plan. In general, management units have been established for one or more stocks of a single species returning to a single river system that flows into saltwater, or as otherwise agreed by the co-managers. While the PSSMP called for escapement goals for these natural management units to be the level associated with maximum sustained harvest (MSH), in practice
most natural Chinook escapement goals for Puget Sound were based on recent year average observed escapement (Ames and Phinney, 1977).

Table 11. Natural management units for Puget Sound Chinook and their component populations. The production category of each population is noted in parentheses.

Management Unit	Component Populations
Nooksack Early	North/ Fork Nooksack River (1) South Fork Nooksack River (1)
Skagit Summer / Fall	Upper Skagit River Summer (1) Lower Sauk River Summer (1) Lower Skagit River Fall (1)
Skagit Spring	Upper Sauk River (1) Suiattle River (1) Upper Cascade River (1)
Stillaguamish	North Fork Stillaguamish River Summer (1) South Fork \& mainstem Stillaguamish River Fall (1)
Snohomish	Skykomish River Summer (1) Snoqualmie River Fall (1)
Lake Washington	Cedar River Fall (1) North Lake Washington Tributaries Fall (2)
Green	Green River Fall (1)
White	White River Spring (1)
Puyallup	Puyallup River Fall (2)
Nisqually	Nisqually River Fall (2)
Skokomish	North and South Fork Skokomish River Fall (2)
Mid-Hood Canal	Hamma Hamma River Fall (2) Duckabush River Fall (2) Dosewallips River Fall (2)
Dungeness	Dungeness River Spring/Summer(1)
Elwha	Elwha River Summer (1)
Western Strait of Juan de Fuca ${ }^{2}$	Hoko River Fall (1)

${ }^{1}$ The three rivers comprise one population.
${ }^{2}$ The Hoko River is not part of the listed Puget Sound ESU.

Of the 15 management units covered in this Plan (Table 11), six contain more than one population. The other nine management units comprise one population. This Plan includes management measures intended to conserve the genetic characteristics of each population until habitat is restored to levels that can support viable populations and sustainable harvest (see Chapter 6, and the management unit profiles for Skagit, Stillaguamish, Snohomish, and Lake Washington in Appendix A). This significant change in management means that management units are no longer the smallest units considered in management of Puget Sound fisheries. It does not mean that separate
populations must be managed for the same objective as the management units (i.e., MSH escapement). It means that each separate population is managed to avoid or reduce its risk of extinction.

The availability and quality of data to inform management of individual populations varies. For some populations, the only directly applicable data are spawning escapement estimates. In such cases, estimates of migratory pathways, entry patterns, age composition and maturation trends, age at recruitment, catch distribution and contributions must be inferred from the most closely related population for which such information is available.

3.3 Population Categories

The co-managers' Comprehensive Management Plan for Puget Sound Chinook categorizes populations according to the origin of naturally reproducing adults, presence of indigenous populations, the proportional contribution of artificial production, and the origin of hatchery broodstock (Table 11):

- Category 1 - natural production is predominantly of natural origin, by native / indigenous stock(s), or enhanced to a greater or lesser extent by hatchery programs that utilize indigenous broodstock.
- Category 2 - natural production by a non-native stock, introduced for use in local hatchery production, and influenced by ongoing hatchery contribution. The indigenous population is functionally extinct. Habitat condition may not currently support self-sustaining natural production.
- Category 3 - an independent natural population was not historically present; natural production may occur, involving adults returning to a local hatchery program, or straying from adjacent natural populations or hatchery programs.

Category 1 and 2 populations comprise the remaining extant populations among those delineated by the Puget Sound TRT (Ruckelshaus et al. 2006) as making up the historical legacy of the ESU. Conservation of Category 1 populations is the first priority of this plan, because they comprise what are currently considered genetically and ecologically unique components of the ESU. They include populations in the Nooksack, Skagit, Stillaguamish, Snohomish, Cedar, Green, White, Dungeness, and Elwha rivers (Table 11). The Hoko River population, outside of the ESU, is also designated Category I.

Natural production of Category 2 populations in the Sammamish, Puyallup, Nisqually, Skokomish, and mid-Hood Canal systems is comprised of Chinook now genetically indistinguishable from those used for local hatchery production because of extensive interbreeding, and because the Green River stock was used to initiate and perpetuate the hatchery programs.

Hatchery recovery programs are essential to protecting the genetic and demographic integrity of critically depressed populations in the Nooksack, Stillaguamish, White, Dungeness, and Elwha rivers. Hatchery production in these systems was included in the original ESA listing, because it is essential to the recovery of the ESU (NMFS 1999). The NMFS subsequently listed hatchery production in Issaquah Creek, and in the Green, Puyallup, Nisqually, Skokomish, and mid-Hood Canal rivers, because these hatchery stocks were not significantly divergent from naturally-spawning fish in those systems (NMFS 2005a, NMFS 2005b).

The listed, 'production' hatchery programs were initiated with the primary objective of enhancing fisheries, thereby mitigating the decline in natural production resulting from loss of habitat function. Hatchery production was seen as a solution to the increasing demand for fishing opportunity, particularly following the resolution of U.S. v. Washington, and the rapid human population increase in the Puget Sound region. Some programs operate under legally-binding mitigation agreements associated with hydropower projects. Formerly, the harvest management strategy for these programs was to fully utilize this increased hatchery production, and constrain harvest only to the extent necessary to ensure that escapement was adequate to perpetuate the hatchery program. However, high exploitation rates were not sustainable for commingled natural Chinook populations.

Category 2 populations that are heavily influenced by hatchery programs, and where current habitat conditions may prevent recovery, generally have higher levels of harvest than Category 1 populations under this Plan. For both the Nisqually and Skokomish populations, allowable harvest rates have been reduced with this Plan's current revision to assure their viability and to preserve future options to manage for higher natural-origin production as recovery potential improves in response to habitat restoration.

Specific harvest objectives have not been established for Category 3 populations in this Plan, so their status is not discussed here in detail. Some hatchery programs operate in systems where there is no evidence of historical native Chinook production. These include programs in the Samish River, Glenwood Springs (East Sound), Gorst Creek and Grovers Creek, University of Washington (Portage Bay), Chambers Creek / Garrison Springs, Minter Creek, Deschutes River, and Hoodsport. In these areas, terminal harvest is frequently managed to remove a very high proportion of the returning Chinook, while providing sufficient escapement to perpetuate the program. However, if the harvest falls short of this objective, excess adults may spawn naturally, or be intentionally passed above barriers to utilize otherwise inaccessible spawning areas. Straying from non-local hatchery programs may results in some natural Chinook production, but these streams cannot support independent populations.

4. Management Thresholds and Exploitation Rate Ceilings

4.1 Upper Management Thresholds

An upper management threshold (UMT) is set for each MU (Table 12), consistent with the PSSMP, as the escapement level associated with achieving optimum productivity (i.e. maximum sustainable harvest (MSH)), unless agreement has been reached by the co-managers on an alternative definition. Escapement to each MU is projected during pre-season harvest planning, after accounting fishing mortality in all fisheries. If spawning escapement is projected to substantially exceed the UMT, higher levels of fishing impact may be allowed, subject to conditions further specified in Chapter 5.2. The UMT is generally used as a benchmark for evaluating population status, either pre-season or post-season.

For some management units, UMTs are quantitatively derived from population recruitment functions or associated simulations of population dynamics. To compensate for the uncertainty in quantifying recruitment and recent productivity, UMTs are set above the estimated or assumed MSH level, to reduce the risk of under-escapement under potentially higher harvest. UMTs for the Skagit summer/fall, Skagit spring, Stillaguamish, and Snohomish MUs were derived in this manner. The method used for each MU is described in its Management Unit Profile (i.e., Appendix A).

For some MUs, where data is not available to quantify recent productivity by conventional cohort reconstruction, the UMTs were set with reference to habitat-based productivity modeling, using the EDT method to emulate current habitat condition. Caution is necessary with this approach, because the EDT model does not precisely estimate recruitment parameters.

For the remaining MUs, UMTs were set at historical escapement goals, which in some cases were derived from historical spawner density and spawning habitat area, and in other cases based on historically high escapements. These UMTs are probably higher than the levels associated with MSH under current degraded habitat condition.

Setting the UMT at the current MSH escapement level or higher is a conservative strategy that assures that harvest will not impede recovery. As habitat conditions change, UMTs should be adjusted to account for different productivity or capacity.

4.2 Low Abundance Thresholds

If population abundance falls to a very low level, there is a significant increase in the risk of demographic instability, loss of genetic integrity, and extinction. This point of biological instability (i.e. the critical threshold) has not been quantified for all salmon populations, but genetic and demographic theory has defined its boundaries (McElhany et al. 2000). At very low spawner abundance, ecological and behavioral factors may cause a dramatic decline in productivity. Low
spawner density can affect spawning success by reducing the opportunity for mate selection, or finding suitable mates. Depensatory predation can significantly reduce smolt production. However, the abundance level at which these factors exert their effect probably differ markedly between populations.

Table 12. Exploitation rate ceilings, low abundance thresholds and critical exploitation rate ceilings for Puget Sound Chinook management units.

Management Unit	Exploitation Rate Ceiling	Upper Management Threshold	Low Abundance Threshold	Critical Exploitation Rate Ceiling
Nooksack North Fork South Fork		$\begin{array}{\|l\|} \hline 4000 \\ 2000 \\ 2000 \\ \hline \end{array}$	$\begin{aligned} & 1,000^{1} \\ & 1,000^{1} \\ & \hline \end{aligned}$	7\% / 9\% SUS ${ }^{3}$
Skagit summer / fall Upper Skagit summer Sauk summer Lower Skagit fall	50\%	14,500	$\begin{aligned} & 4,800 \\ & 2200 \\ & 400 \\ & 900 \end{aligned}$	15\% SUS evenyears 17\% SUS odd-years
Skagit spring Upper Sauk Upper Cascade Suiattle	38\%	2,000	$\begin{aligned} & \hline 576 \\ & 130 \\ & 170 \\ & 170 \\ & \hline \end{aligned}$	18\% SUS
Stillaguamish North Fork Summer South Fk \& MS Fall	25\%	$\begin{array}{\|l\|} \hline 900 \\ 600 \\ 300 \\ \hline \end{array}$	$\begin{aligned} & 700^{1} \\ & 500^{1} \\ & 200^{1} \end{aligned}$	15\% SUS
Snohomish Skykomish Snoqualmie	21\%	$\begin{aligned} & 4,600 \\ & 3,600 \\ & 1,000 \end{aligned}$	$\begin{gathered} 2,800^{1} \\ 1745^{1} \\ 521^{1} \end{gathered}$	15\% SUS
Lake Washington Cedar River	20\% SUS	1,680	200	10\% PT SUS
Green	15\% PT SUS	5,800	1,800	12\% PT SUS
White River spring	20\%	1,000	200	15\% SUS
Puyallup fall	50\%	500 (South Prairie Cr.)	500	12\% PT SUS
Nisqually	65\% for $2010-11,56 \%$ for $2012-13,47 \%$ for 2014			
Skokomish	50\%	3,650	1,300 ${ }^{2}$	12\% PT SUS
Mid-Hood Canal	15\% PT SUS	750	400	12\% PT SUS
Dungeness	10\% SUS	925	500	6\% SUS
Elwha	10\% SUS	2,900	1,000	6\% SUS
Western JDF	10\% SUS	850	500	6\% SUS

natural-origin spawners
${ }^{2}$ Skokomish LAT is escapement of 800 natural and/or 500 hatchery
${ }^{3}$ SUS ER will not exceed 7% in 4 out of 5 years

The Low Abundance Threshold (LAT) set for each MU (Table 12), which triggers additional conservation measures in fisheries, is set well above the critical threshold, so that more restrictive management of fisheries can be implemented to reduce the risk of a population becoming unstable. The derivation of the LAT varies, similar to the UMTs, depending on the availability of information to quantify productivity and abundance.

For the Skagit summer and fall populations the LATs were calculated as the forecast escapement level for which there is a 95 percent probability that actual escapement will be above the point of instability (i.e., 5 percent of the replacement escapement level). This calculation accounted for the difference between forecast and actual escapement in recent years, and the variance around recruitment parameters

For the North Fork Stillaguamish population, the LAT was set at 500, because there is evidence of resilience from this abundance level (i.e. this escapement previously produced recruitment rates of 2 -5 adults per spawner). The White LAT was set at 200, because the population rebounded from a previous escapement of 150 . In other cases, where such population-specific data were lacking, referring to published literature, we set the LAT above the values of the minimum effective population size that would avoid demographic instability or loss of genetic integrity (e.g., Franklin 1980; Waples 1990; Lande 1995; McElhany et al. 2000).

4.3 Exploitation Rate Ceilings

This Plan sets fisheries exploitation rate (ER) ceilings as the principle mechanism for achieving spawning escapement levels that are consistent with current habitat function. Exploitation rate management was first implemented in the late 1990s for Puget Sound Chinook, (i.e. before the ESU was listed) because the former harvest strategy, based on fixed escapement goals, was not adequately conservative, and was not consistently applicable across fisheries when the run sizes were lower than escapement goals. FRAM estimates of exploitation rate are more accurate than its projections of spawning escapement. The same transition to exploitation rate management has been implemented for Puget Sound coho. Harvest management objectives must be suited to existing data and tools for forecasting annual abundance and projecting harvest mortality. The co-managers determined that exploitation rate management was more averse to risk than a fixed escapement goal management strategy, because estimates of exploitation rates were considered more reliable and more amenable to post-season assessment.

In this Plan, ER ceilings are established for each MU; they apply either to all fisheries, southern U.S. fisheries, or pre-terminal southern US fisheries (Table 12). When escapement is projected to exceed the LAT, the ER ceiling defines the maximum level of fishing-related mortality allowed for that MU. The ER ceilings for the Skagit summer/fall, Skagit spring, Stillaguamish, and Snohomish management units were derived from risk analysis based on quantified productivity under existing habitat conditions (see below). For other MUs the ER ceilings were set with reference to fisheries regimes in 1999-2003 and their observed escapement outcomes.

When escapement is projected to be less than the LAT, fishing-related mortality is further constrained by implementing a lower, critical exploitation rate (CER) ceiling, to increase escapement. The CER ceilings were chosen with reference to pre-season SUS or pre-terminal SUS ER estimates for 2000 - 2003. These years offered recent perspective on harvest regimes constrained by critical status for some Puget Sound populations, and very significant reductions in harvest of Puget Sound Chinook relative to SUS fisheries in before the late 1980s. The CER ceilings allow for harvest opportunity directed at abundant hatchery-origin Chinook, and sockeye, pink, coho, and chum stocks originating in Puget Sound, and sockeye, pink, and chum stocks originating in the Fraser River. The opportunity on these other stocks, however, is conditioned on careful time and area management to control the cumulative effect of SUS fisheries on critical Chinook management units to be below the CER. Often the CER constraint will reduce options for harvest on otherwise harvestable stocks.

If the CER ceiling were reduced towards zero, then critical status for even one management unit would result in no allowance for any fishing for salmon in all times and places where that stock is known to occur, which would effectively close most salmon fisheries within the geographic scope of this plan. Compared with this, the CER ceilings in the plan result in minimal additional demographic and genetic risk to critical stocks while allowing some opportunity on healthy, harvestable stocks and species. Among other outcomes, therefore, the CER ceilings preserve a portion of the fishing opportunity reserved by the tribes under the Stevens treaties with the United States, at a minimal cost in demographic and genetic risk. However, improvement of these stocks' condition will not occur without significant actions to correct reductions in productive and production capacity lost due to loss and degradation of habitat. No harvest management action, including complete closure of all fisheries on the west coast that affect a critical stock, is sufficient, by itself, to improve an MU above critical status. The CER ceilings in this plan will not significantly increase the risk of further decline, but other profound actions must be put in place to reverse the decline.

The CER ceilings (Table 12) are defined as total SUS ceiling exploitation rates for most management units. For the Green, Puyallup, Skokomish, and Mid Hood Canal MUs, the CER ceilings apply only to pre-terminal fisheries. For these units, additional terminal fishery conservation measures are detailed in MU profiles (Appendix A).

Derivation of Exploitation Rate Ceilings

ER ceilings applying to all fisheries are established for the Skagit summer / fall, Skagit spring, Stillaguamish, and Snohomish management units. The ER ceiling for these MUs was selected as the highest exploitation rate that met the more restrictive of the following two risk criteria:

- A probability that escapement will fall to or below the critical threshold is less than five percentage points higher than under zero harvest
- a probability of at least 80% that escapement will achieve the specified upper threshold, or the probability of escapement being less than the upper threshold is less than 10 percentage points lower than under zero harvest.

The risk assessment procedures used to derive the ER ceiling first relied on detailed information about the current productivity of the population(s) comprising the MU, including estimates of annual spawning escapement, maturation rates, and harvest-related mortality. These data enable reconstruction of historical cohort abundance, and variability in marine and freshwater survival, from which a spawner recruit function can be fitted. Population dynamics were simulated, with initial escapement specified, using the spawner recruit function to predict recruitment, and a specified annual harvest rate to predict escapement. Typically, simulations were run for 25 years, under variable marine and/or freshwater survival and specified management error. Management error includes the differences between anticipated and actual Chinook catch, changes in the harvest distribution of contributing stocks, and error in forecasting abundance. Simulations were iterated across a range of exploitation rates, from 0% to 80%. The time series of annual escapements output from the simulations were compared with the risk criteria, stated above, to select the ER ceiling. The methods used for derivation of the recruitment functions, selection of upper and lower threshold values, and selection of the ER Ceiling, for each of the four management units, are detailed in Appendix A.

The simulations involved in the risk assessment procedure indicate that the risk criteria will be met if actual annual exploitation rates are at the level of the ER ceiling. However, we expect annual exploitation rates will be lower than the ER ceiling, for some MU units, providing further assurance the populations will be protected.

For MUs lacking data to quantify productivity, ER ceilings and CER ceilings were set by reviewing fisheries regimes implemented in 1998 through 2003, and their spawning escapement outcomes relative the best available values for optimum escapement or spawning habitat capacity for each population. For these MUs, ER and CER ceilings were not set based on the likelihood of achieving escapement thresholds. The potential benefits of higher escapement (i.e. under lower ceilings), particularly for populations in critical or near-critical status, was balanced with maintaining harvest opportunity on surplus hatchery-origin Chinook, coho, sockeye, pink, and chum. For some management units, SUS CER ceilings were established; for other MUs, pre-terminal SUS CER ceilings were established, combined with specific harvest measures for terminal-area fisheries. Since this Plan precludes fisheries targeted at MUs without harvestable abundance, these ceilings allow the spawning escapements for these units to benefit from the recent reductions in Canadian and U.S. fisheries, in some cases providing terminal runs that exceed the upper management threshold.

5. Implementation

Pre-season harvest planning will develop a SUS fisheries regime that achieves the management objectives for all MUs, using FRAM projections to check compliance with ER ceilings and escapement thresholds. Pre-season planning will also shape the fisheries regime to meet allocation objectives and optimize fishing opportunity for all user groups within the constraints of forecasted abundance and management objectives.

The regulatory regime developed for pre-terminal, mixed-stock fisheries will be substantially influenced by achieving the conservation objectives of populations in critical status, because more productive populations and management units are commingled with the less productive natural populations and management units with correspondingly lower ER ceilings.

This Plan prohibits directed harvest (defined below) on protected populations of Puget Sound Chinook, unless there is a robust forecast or other evidence of harvestable surplus. If a management unit does not have a harvestable surplus, then harvest-related mortality will be constrained to incidental impacts. Fisheries directed at harvesting a surplus for a specific population will occur in terminal areas, and will be implemented cautiously. Should they occur, directed fisheries would not intentionally catch all of the surplus, so escapement would exceed the UMT.

The Plan reflects the PSSMP mandate for equitable sharing of the conservation burden. Southern US fisheries will continue harvesting more abundant salmon stocks, and surplus of relatively abundant Puget Sound hatchery Chinook. Criteria defining minimal harvest opportunity and management responses to these situations (including exceedence of ER ceilings due to high northern fishery interceptions) is further detailed below.

5.1 Rules for Allowing Fisheries

The co-managers' primary intent is to control impacts on listed Chinook populations, to avoid impeding their rebuilding, while providing sufficient opportunity for the harvest of other species, abundant returns of hatchery-origin Chinook, and available surplus from stronger natural Chinook stocks. For the duration of this Plan, directed fisheries that target listed Chinook populations are precluded, unless a harvestable surplus exists (as defined below in Chapter 5.2). Except for very small scale tribal ceremonial and subsistence fisheries, and research fisheries in a few areas, we expect directed fisheries to occur infrequently for the duration of this Plan.

For the purposes of this Plan, "directed" fisheries are defined as those in which more than 50 percent of the total fishery-related mortality is made up of protected, Puget Sound-origin Chinook. Total mortality includes all landed and non-landed mortality.

Landed and non-landed incidental mortality of listed Chinook will occur in fisheries directed at nonlisted hatchery-origin Chinook and other salmon species, but will be strictly constrained by harvest limits that are established expressly to conserve naturally-produced Chinook.

The annual management strategy, for any given Chinook management unit, shall depend on whether a harvestable surplus is forecast. This Plan prohibits directed harvest on natural populations of Puget Sound Chinook, unless they have harvestable surplus. If a management unit does not have a harvestable surplus, harvest-related mortality will be constrained to incidental impacts. Directed and incidental fishery impacts are constrained by stated harvest rate ceilings or escapement goals for each management unit. The following rules define how and where fisheries can operate:

- Fisheries may be conducted where more than 50 percent of the resulting fishery-related mortality will accrue to management units and species with harvestable surpluses.
- Within this constraint, the intent is to limit harvest of listed Chinook populations or management units that lack harvestable surplus, not to develop a fishing regime that exerts the highest possible impact that does not exceed violate specified ceiling exploitation rates or escapement goals.
- Incidental harvest of weak stocks will not be eliminated, but to avoid increasing the risk of extinction of weak stocks, harvest impacts will be reduced to the minimal level that still enables fishing opportunity on non-listed Chinook and other species, when such harvest is appropriate.
- Exceptions may be provided for tribal ceremonial and/or subsistence fisheries, and research fisheries that collect information essential to management.

Where it is not possible to effectively target productive natural stocks or hatchery production, without a majority of the fishery impacts accruing to runs without a harvestable surplus, use of the above rules will likely necessitate foregoing the harvest of much of the surplus from those more productive management units.

5.2 Rules That Control Harvest Levels

The co-managers' will use the following guidelines when assessing the appropriate levels of harvest for proposed annual fishing regimes:

- ER ceilings are allowable maximums, not annual targets for each management unit. The annual fishing regime will be devised to meet the conservation objectives of the weakest, least productive management unit or component population. Because these units commingle to some extent with more productive units, even in terminal fishing areas, meeting the needs
of these units may require reduction of the exploitation on stronger units to a significantly lower level than the level that would only meet the conservation needs of the stronger units.
- A management unit shall be considered to have a harvestable surplus if, after accounting for expected Alaskan and Canadian catches, and incidental, test, and tribal ceremonial and subsistence catches in southern U.S. fisheries, an MU is expected to have a spawning escapement greater than its UMT, and its projected ER is less than its ER ceiling. In that case, additional fisheries (including directed fisheries) may be implemented within the constraints imposed by the ER ceiling and the UMT, consistent with the rules for allowing fisheries in Chapter 5.1. In this case, impacts may not be limited to incidental harvest mortality. The array of fisheries that may harvest the surplus can be widened, to include terminal-area, directed fisheries. However, in this circumstance, expanded fisheries will not exceed the ER ceiling, and escapement will exceed the UMT.
- Directed fisheries targeting harvestable surplus for any management unit will be implemented cautiously. Consistent forecasts of high abundance, substantially above the upper management threshold, and preferably corroborated by post-season or in-season assessment, would be necessary to initiate such fisheries. Alternatively, a terminal area inseason update with consistent performance may be used to identify abundance above the upper management threshold. In practice, a substantial harvestable surplus must be available, so that the directed fishery is of practical magnitude (i.e. there is substantial harvest opportunity and the fishery can be managed with certainty not to exceed the harvest target). The decision to implement a directed fishery will also consider the uncertainty in forecasts and fisheries mortality projections. A directed fishery would not be planned to remove a very small surplus above the UMT. Implementing a new directed fishery, in an area where one has not recently occurred, will require reasonable assurance that abundance has increased to the level that will support a fishery. In practice this implies that increased abundance has occurred for a period of prior years, and that forecasts are reliable, before implementing a new directed fishery.
- If a MU does not have harvestable surplus, then, consistent with the rules for allowing fisheries (above), only incidental, test, and tribal ceremonial and subsistence harvests of that MU will be allowed in Washington areas.
- The projected exploitation rate for MUs with no harvestable surplus will not be allowed to exceed their exploitation rate ceilings. In the event that the projected ER exceeds the ceiling ER, the incidental, test, and subsistence harvests must be further reduced until the ceiling ER Ceiling is not exceeded. An exception to this rule, however, applies for stocks that are managed for a total ER ceiling, in cases where the combined Northern ER is projected to be greater than the difference between the ER ceiling and the CER ceiling. In such cases, the CER ceiling becomes the applicable ER ceiling for that stock, and that stock's total projected

ER may exceed the ER ceiling (see "Implementing CER ceilings in response to northern fisheries interceptions", below).

- Pre-season planning will bring the SUS fishing regime into compliance with the 2008 Pacific Salmon Treaty Chinook Agreement, such that the SUS ISBM fishery index will not exceed the Treaty-mandated ceiling (see Section IV, Pacific Salmon Treaty). The SUS ISBM fishery comprises the aggregate of Washington coastal and Puget Sound fisheries.
- After accounting for anticipated Alaskan and Canadian interceptions, test fisheries, ceremonial and subsistence harvest, and incidental mortality in southern U.S. fisheries, if the spawning escapement for any management unit is expected to be lower than its low abundance threshold, Washington fisheries will be further shaped until either the escapement for the unit is projected to exceed its low abundance threshold, or its projected exploitation rate does not exceed the CER ceiling (see section 5.3, below).
- The co-managers may implement additional fisheries conservation measures, where analysis demonstrates they will contribute significantly to recovery of a management unit, in concert with other habitat and enhancement measures.

5.3 Response to Critical Status

The CER ceiling for any MU will be implemented if natural escapement is projected to be less than the LAT. For the Skagit summer/fall, Skagit spring, and Snohomish management units, each with more than one population, the management unit LAT is greater than the sum of the component population LATs (Table 12). The MU LATs are set at these levels to minimize the risk of going below any of the component population LATs when managing for the pooled populations as a unit. As described in Chapter 4, the CER ceilings for each MU reflect baseline harvest opportunity for surplus hatchery-origin Chinook, coho, pink, sockeye, and chum salmon. Appendix B provides a qualitative description of baseline tribal fisheries that virtually excludes harvest directed at natural Chinook (with exceptions for ceremonial and subsistence harvest), and shapes fisheries directed at other species to reduce incidental mortality of natural Chinook. Reducing tribal fisheries to those specified in the minimum fishery regime (MFR - Appendix B), while requiring significant sacrifice of the fishing opportunity guaranteed by treaty rights, represent the minimum level of fishing that allows some exercise of those rights. The MFR, however, is presented only as a standard, and not as a guarantee - under critical status, it is the CER ceiling that is the overriding management constraint, whether it accommodates the MFR fisheries or not.

Restriction of harvest will not, by itself, enable recovery of populations that have suffered severe decline in abundance, resulting from loss and degradation of properly functioning Chinook habitat conditions. Restriction of fishing below the level defined in this critical response would reduce treaty and non-treaty fishing opportunity for abundant hatchery-origin Chinook, and non-listed species.

The CER ceilings (Table 12) are defined as total SUS ceiling exploitation rates for the Nooksack, Skagit, Stillaguamish, Snohomish, White, Dungeness, and Elwha management units. For the Lake Washington, Green, Puyallup, Nisqually, Mid Hood Canal and Skokomish units, the ceiling rates apply only to pre-terminal fisheries. For these units, additional terminal fishery conservation measures are detailed in the unit profiles (Appendix A).

It is not the co-managers' intent to construct a regime that incurs mortality at the level of the CER ceiling implemented for each MU in critical status. During pre-season planning the co-managers may, by agreement, set the annual management objective for any critical unit below the specified CER ceiling. Fishing patterns and regulations vary between years and the impacts on critical units in individual fisheries will also vary. To ensure that SUS ERs for critical MUs do not exceed either the CER ceiling or the agreed, lower ceiling, fisheries that incur projected increased impacts on critical units must be balanced by reductions in impacts associated with other southern U.S. fisheries. The effects of management regimes on critical MUs will be carefully assessed post-season, for reference in subsequent pre-season planning.

Implementing CER ceilings in response to northern fisheries interceptions

In recent years the impact of some fisheries in British Columbia (notably those on the west coast of Vancouver Island) on some populations of Puget Sound and Columbia River Chinook increased substantially (PSC 2006). The 2008 PST Chinook Agreement was intended to address conservation of ESA listed populations, but reductions in northern fisheries stipulated in the Agreement reduce exploitation rates on Puget Sound MUs by only about $2-3 \%$, and do not offset the increase in mortality on some Puget Sound stocks that occurred in 2003 - 2005 (CTC 2006). The NMFS determined the 2008 Agreement met the ESA conservation standards (NMFS 2008).

For some Puget Sound MUs, their interception rate in northern fisheries may cause their total ER ceiling to be exceeded. To avoid exceeding the ER ceiling, SUS fisheries would have to be constrained to a lower ER than would have been necessary if the MU was at critical status. If the ER associated with northern fisheries on that MU is projected to exceed the difference between the MU's ER ceiling and CER ceilings, the constraint for that MU in that year will be its CER ceiling.

Recent experience has demonstrated potential for this to occur for several Puget Sound units that are unlikely to fall into critical status in the duration of this plan. The CER ceiling, in this circumstance, would constrain SUS fisheries to the same degree as if that unit were in critical status. While this measure imposes a further conservation burden on Washington fisheries, pursuant to the underlying rationale for the MFR, it maintains access to the harvestable surplus of non-listed Chinook, and other species.

Because of annual variability in abundance among the various populations, there is no single fishing regime that can be implemented from one year to the next to achieve the management objectives for all Puget Sound Chinook units. The co-managers have, at their disposal, a range of management
tools, including gear restrictions, time / area closures, catch or retention limits, and complete closures of specific fisheries. Combinations of these actions will be implemented in any given year, as necessary, to insure that management objectives are achieved.

Discretionary conservation measures

The co-managers may, by mutual agreement, implement further conservation constraint on SUS fisheries, in response to critical status of any management unit, or in response to declining status or heightened uncertainty about status of any management unit, or to achieve allocation objectives. In doing so, they will consider the most recent information regarding the status and productivity of the management unit or population, and past performance in achieving its management objectives. The conservation effect of such measures may not always be quantifiable by the FRAM, but, based on the best available information on the distribution of stocks, will be judged to have beneficial effect.

5.4 Pre-season Planning

Annual planning of Puget Sound fisheries proceeds concurrently with that of coastal fisheries, from February through early-April each year, in the Pacific Fishery Management Council and North of Cape Falcon (NOF) forums. These offer the public, particularly commercial and recreational fishing interest groups, access to salmon status information and opportunity to interact with the comanagers in developing annual fishing regimes. Conservation concerns for any management unit are identified early in the process. The steps in the planning process are:

Abundance forecasts are developed for Puget Sound, Washington coastal, and Columbia River Chinook management units in advance of the management planning process. Forecasting methods are detailed in documents available from WDFW and tribal management agencies. Preliminary abundance forecasts for Canadian Chinook stocks, and expected catch ceilings in Alaska and British Columbia, are obtained through the Pacific Salmon Commission or directly from Canada Department of Fisheries and Oceans.

The Pacific Fishery Management Council's annual planning process begins in March by establishing a range of allowable catch ('options') for each coastal fishery. For Washington fisheries, this involves recreational and commercial troll Chinook catch quotas for Areas $1-4$ (including Area 4B in the western Strait of Juan de Fuca).

An initial regime for Puget Sound fishing is evaluated. Recreational fisheries are initially set at levels similar to the previous year's regime. Incidental Chinook harvest in pre-terminal net fisheries is projected from recent-year catch data, and the anticipated scope of fisheries for other species in the upcoming year. Terminal area net fisheries in Chinook management periods are scaled to harvest surplus production and achieve natural and / or hatchery escapement objectives. The fishery regimes for pre-terminal and terminal net fisheries directed at other salmon species are initially set to meet management objectives for those species.

The FRAM is configured to simulate this initial regulation set for all Washington fisheries, based on forecast abundance of all contributing Chinook management units. Spawning escapement for each population, and total and SUS exploitation rates, projected by this model run, are then examined for compliance with management objectives for each Puget Sound Chinook management unit, and their component populations.

The initial model runs reveal conservation concerns for any management units in critical status (i.e. where escapement falls short of the low abundance thresholds), and a more general perspective on the achievement of management objectives for all other management units. In accordance with the preceding rules that control harvest levels, regulations governing directed and incidental Chinook harvest impacts are adjusted, through negotiation among the co-managers, then modeled, to develop a fishery regime that addresses the conservation concerns for weak stocks, ensures that exploitation rate ceilings are not exceeded and / or escapement objectives are achieved for all MUs.

5.5 Compliance with Pacific Salmon Treaty Chinook Agreements

The fishing regime developed by pre-season planning will be examined for compliance with the 2008 PST Chinook agreements. The non-ceiling index for the SUS Individual Stock Based Management (ISBM) fishery will not exceed the Treaty-mandated ceiling. If the ISBM index is projected to be exceeded, U.S. fisheries must be further reduced until the mandated ceiling is achieved.

In 2008, the parties to the Pacific Salmon Treaty agreed to a revised abundance-based Chinook management regime for fisheries in the United States and Canada. Southern U.S. fisheries will be conducted, in their aggregate, as an ISBM fishery keyed to specific stock groups. With respect to Puget Sound Chinook, this agreement refers to the abundance status (i.e. spawning escapement) of certain indicator stock groups with respect to their identified escapement goals ${ }^{1}$. The summer/fall indicator group includes the Hoko, Skagit, Stillaguamish, Snohomish, Lake Washington, and Green units; the spring indicator group includes Skagit spring and Nooksack early units. Stepped reductions in ISBM fisheries will be imposed when two or more of these indicator units are projected not to meet their escapement objectives. These reductions will comply with the pass through provisions and general obligations for individual stock-based management regimes (ISBM) pursuant to the Chinook chapter within the US/Canada Pacific Salmon Treaty.

Escapement projected by the FRAM, at the conclusion of pre-season planning, will be compared to PST objectives. According to the PST agreement: "the United State shall reduce by 40\%, the total adult equivalent mortality rate, relative to the 1979-82 base period, in the respective ISBM fisheries that affect those stocks." The reduction shall be referred to as the "general obligation".

[^0]For those stock groups for which the general obligation is insufficient to meet the agreed escapement objectives, the jurisdiction within which the stock group originates shall implement additional reductions:
i. reductions as necessary to meet the agreed escapement objectives; or
ii. which taken together with the general obligation, are at least equivalent to the average of those reductions that occurred for the stock group during the years 1991-96.

The Chinook Technical Committee defined the non-ceiling fishery index (CTC 1996). The PST defers to any more restrictive limit mandated by the Puget Sound Chinook management plan, or otherwise implemented by the co-managers.

5.6 Regulation Implementation

Individual tribes promulgate and enforce regulations for fisheries in their usual and accustomed fishing areas, and WDFW promulgates and enforces non-Indian fishery regulations, consistent with the principles and procedures set forth in the PSSMP. To achieve conservation and sharing objectives all fisheries shall be regulated based on four fundamental elements: (1) acceptably accurate determinations of the appropriate exploitation rate, harvest rate, or numbers of fish available for harvest; (2) the ability to evaluate the effects of specific fishing regulations; (3) a means to monitor fishing activity in a sufficient, timely and accurate fashion; and (4) effective regulation of fisheries, and enforcement, to meet objectives for spawning escapement, harvest sharing, and fishery impacts.

The annual fishing regime, when developed and agreed-to by the co-managers through the PFMC and NOF forums, will be summarized and distributed to all interested parties, at the conclusion of annual pre-season planning. This document will summarize regulatory guidelines for Treaty Indian and non-Indian fisheries (i.e. species quotas, bag limits, time/area restrictions, and gear requirements) for each marine management area on the Washington coast and in Puget Sound, and each freshwater management area in Puget Sound. Regulations enacted during the season will implement these guidelines, but may be modified, based on catch and abundance assessment, by agreement between parties. In-season modifications shall be in accordance to the procedures specified in the PSSMP and subsequent court orders.

Further details on fishery regulations may be found in the respective parties' regulation summaries, and other WDFW and tribal documents. The co-managers maintain a system for transmitting, crossindexing and storing fishery regulations affecting harvest of salmon. Public notification of fishery regulations is achieved through press releases, regulation pamphlets, and telephone hotlines.

5.7 In-season Management

Fisheries schedules and regulations may be adjusted or otherwise changed in-season, by the comanagers or through other operative jurisdictions (e.g. the Fraser Panel, Pacific Fisheries Management Council). Schedules for fisheries governed by quotas, for example, may be shortened so that harvest quotas are not exceeded. Commercial net fishery schedules in Puget Sound may be modified to achieve allocation objectives or in reaction to in-season assessment of the abundance of target stocks, or of stocks harvested incidentally. In each case, the co-managers will assess the effect of proposed in-season changes with regard to their impact on natural Chinook management units, and determine whether the management action is compliant with the harvest limits stated in this plan. Particular attention will be directed to in-season changes that impact management units or populations in critical status, or where the pre-season plan projections indicated that total impacts were close to ceiling exploitation rates or projected escapement close to the respective escapement goals.

The co-managers will notify the NMFS when in-season management decisions cause an increase in ER, or lower escapement, for a particular MU, relative to the pre-season projection. The notification will include a description of the regulatory change, an assessment of the resulting fishing mortality, and technical or other demonstration that the management action is in accordance with harvest guidelines (i.e. ER ceilings and/or thresholds) and principles established by this Plan.

5.8 Enforcement

Non-treaty commercial and recreational fishery regulations are enforced by the WDFW Enforcement Program. The Enforcement Program's 137 general-authority commissioned fish police officers provide protection for the state's fish and wildlife habitats and species, prevent and manage human/wildlife contacts, and conduct outreach and education activities for both the citizens and resource users of Washington State. The mission and responsibilities of the Enforcement Program originate with statutes promulgated in several titles of the Revised Code of Washington (RCW) and Washington Administrative Code (WAC). Primary among these is RCW Title 77 - Fish and Wildlife, and Title 10 - Criminal Procedure.

Commissioned Fish and Wildlife Officers (FWOs) stationed in six regions throughout the state work with a variety of state and federal agencies to enforce all fish and wildlife laws, general authority laws, and WDFW rules. FWOs hold commissions with the United States Fish and Wildlife Service (USFWS) and the National Oceanic and Atmospheric Administration's Office of Law Enforcement (NOAA-OLE), and therefore have jurisdiction over specific federal violations. The most important of these are the Endangered Species Act (ESA) and the Lacey Act. Officers work joint patrols and coordinate with these federal agencies as well as with the United States Coast Guard (USCG), United States Forest Service (USFS), Federal Bureau of Investigation (FBI), Bureau of Land Management (BLM), tribal police, and the Department of Homeland Security (DHS).

Each tribe exercises authority to enforce tribal fishing regulations, whether fisheries occur on or off their reservation. Enforcement officers of one tribal agency may be cross-deputized by another tribal agency, where those tribes fish in common areas. Some tribes have increased enforcement activity to reduce illegal fishing in some areas. Tribal and WDFW agencies coordinate enforcement for some fisheries. Prosecution of violations of tribal regulations occurs through tribal courts and governmental structures.

We anticipate WDFW and tribal enforcement activity will continue similar to recent years for the duration of this Plan, under similar funding support. Outreach and education will continue to complement enforcement. High compliance with fishing regulations is expected to continue, and contribute to achieving the biological objectives of the Plan.

6. Conservative Management

This chapter summarizes the conservative rationale and technical methods underlying harvest management objectives established by this Plan, notes how they have changed from previous management practices, and explains how they achieve the conservation standards of the ESA.

ESA Conservation Criteria

This Plan constrains harvest of all management units so that fishing mortality does not impede rebuilding and eventual recovery of the ESU. Harvest constraint will play an essential role by providing adequate escapement to optimize natural production under existing habitat conditions, and maintaining the existing diversity of populations that make up the ESU, by stabilizing, and in some cases increasing natural spawning escapement. However, rebuilding and recovering populations depends on successful management of other factors affecting productivity, including the restoration of habitat function and hatchery reform.

Estimates of optimum or MSH escapement levels are highly uncertain, particularly where data are limited. Given this uncertainty, a fishery management regime that allows escapement to range upward from the point estimate of MSH will capitalize on favorable environmental conditions and enable measurement of recruitment across a broader range of escapement, leading to improved estimates of productivity and MSH. This strategy assumes that the potential downside risk of exceeding MSH (reduced productivity due to density dependence) is acceptable.

Additional conservation measures defined by the Plan will increase escapement for populations at critical or near-critical abundance. Hatchery recovery programs are in place for some of the populations at high risk of extinction to ensure their persistence. Additional constraints of SUS harvest, beyond the ER limits in this Plan, will not materially improve the likelihood these populations will survive in the long term.

6.1 Harvest Objectives Based on Natural Productivity

Prior to 1998, Chinook harvest objectives were stated as escapement goals for many Puget Sound management units. The PSSMP stated the preference that escapement goals be based on achieving maximum sustainable harvest, which implied the ability to quantify optimum escapement, by estimating current natural productivity (i.e. spawner - recruit functions). However, the escapement goals that were established by the co-managers for most 'primary' management units did not have a biological basis; most were an average of escapement during a period of high abundance (i.e. 1968 1977 for summer fall stocks, 1959-1968 for Skagit River spring stocks). Pursuant to the PSSMP, the co-managers could agree to different escapement objectives on an annual basis. This management regime was in effect until the late 1990s. Continuing decline in stock status, and the subsequent listing of Puget Sound Chinook with its requirement to develop recovery goals, prompted
re-assessment of the old escapement goals, and development of new harvest strategies for many management units designed to achieve natural spawning escapement objectives.

This Plan sets harvest limits or escapement objectives for all management units consistent with the best available estimates of current or recent natural productivity. Specifying the exploitation rate ceilings and abundance thresholds for all management units in terms of natural production was a significant change from management practices prior to listing. Those objectives will be refined if new data are available and analyses indicate the existing values are in error.

The harvest objectives for each MU in this Plan are stated as ceiling exploitation rates or escapement goals for naturally spawning or, for some MUs, natural-origin Chinook. Though fisheries in some areas are shaped to harvest surplus hatchery production, the primary objective is to assure protection and conservation of natural populations.

Formerly, harvest for 'secondary' MUs was scaled to catch hatchery surplus, without regard to the consequences of these high harvest rates for naturally spawning Chinook. ER ceilings in this Plan are set much lower than historical rates, to conserve naturally spawning populations.

Accounting for Uncertainty and Variability

Uncertainty and annual variability are present in all estimates of productivity of salmon populations. To manage the associated risk, uncertainty and variability in the data or management systems is incorporated into the technical methods used to derive escapement thresholds and exploitation rate ceilings for the Skagit summer / fall, Skagit spring, Stillaguamish, and Snohomish MUs. Derivation of these ER ceilings was outlined in Chapter 4, and is described in more detail in Appendix A. Accounting for uncertainty and variability may be summarized as follows:

- To the extent possible with available data, errors in estimates of freshwater and marine survival rates were estimated and parameterized in spawner - recruit functions;
- Simulations of population dynamics to derive ER ceilings incorporated variance in estimates of recent-year productivity and freshwater or marine survival. We employed recent estimates, assuming these parameters provided the best prediction of population performance over the duration of this plan.
- Management imprecision associated with forecasting abundance and the effects of harvest management were incorporated into population simulations.
- The productivity of populations will be monitored. If significant changes are detected harvest objectives will be adjusted accordingly.

6.2 Protection of Individual Populations

In specifying criteria for determining whether actions affect the probability of ESU recovery, the salmon 4(d) rule states that for populations whose abundance is currently above the critical threshold, rebuilding to their viable threshold must not be impeded. The long-term goal for recovery of the ESU envisions restored functionality of habitat, and much higher than current productivity, with proportionately higher harvest potential, and higher escapement suited to restored habitat function. Viable abundance thresholds defined under those conditions involve naturally produced Chinook. Previous versions of this Plan, and NMFS evaluations of them, have utilized the concept of viable thresholds by defining them in the context of current habitat capacity. Achieving that level of abundance, which is much lower than would be possible under the future recovered condition, fulfills the requirement to not impede recovery.

The abundance of most Puget Sound populations exceeds the critical threshold. For some MUs (Skagit summer/fall, Skagit spring, Stillaguamish, and Snohomish) ER ceilings were derived to assure a high probability of achieving their viable abundance thresholds. The recruitment functions underlying the risk assessment procedure used to determine the ER ceilings were based on the recent productivity of natural origin adults. Thresholds are stated in terms of natural-origin adults for the Stillaguamish and Snohomish MUs, but hatchery-origin adults contribute to natural spawning and to production of all four of these MUs. Hatchery supplementation is essential to maintaining the viability of the Stillaguamish populations. Upper thresholds used for the ER risk assessment, and UMTs, are intentionally set higher than point estimates of MSH escapement for these MUs, in part to accommodate the uncertainty in quantifying productivity and MSH escapement, but also to achieve escapements higher than MSH, enable higher escapement in years of relatively high survival, and thereby enable measurement of recruitment under these conditions and improved estimation of productivity.

For other MUs where recent abundance has exceeded the critical threshold (i.e., the Cedar, Green, Puyallup, White, Skokomish, and Dungeness MUs) UMTs were established absent quantified estimates of current productivity and MSH escapement. The Cedar, White, and Dungeness UMTs were based on assessment of available spawning habitat area, and spawner density. The UMT for the Green MU is the 1965 - 1976 average escapement (WDFW 1977). The UMT for the Puyallup MU (500 spawners) represents full seeding of habitat in the South Prairie - Wilkeson Creek basin. The UMT for the Skokomish MU is 3650 , the total 1650 natural spawners and 2000 returns to the George Adams Hatchery.

With reference to recent years, natural escapements are expected to exceed the UMTs for the Green, White, Puyallup, Nisqually, and Skokomish MUs, including natural-origin and hatchery-origin adults. Sampling programs are in place for each of these MUs to monitor the abundance of firstgeneration hatchery-origin returns and natural-origin returns.

Under this Plan, harvest is not specifically constrained to exceed the UMTs consistently for all these MUs. With reference to recent years, we expect that UMTs will be achieved in some years for the Green, White, Puyallup, Nisqually, and Skokomish MUs, accounting the aggregate of natural- and hatchery-origin adults that spawn naturally. For these MUs harvest is not managed to achieve the UMTs with natural-origin adults, although we sample spawners to determine their origin, and monitor the abundance of first-generation hatchery-origin and natural-origin returns.

We are cognizant of the potential risks to genetic integrity, related to interbreeding of hatchery- and natural-origin Chinook, and resulting lower fitness of their progeny. Domestication selection and other changes in genetic diversity occur in the hatchery environment, though improved cultural practices are being implemented to mitigate these risks. Hatchery programs have been operating for decades in these systems. We lack empirical estimates of hatchery-related fitness loss, relative to the pristine state of populations, or of potential further decline in fitness. Indigenous populations have been extirpated in the Puyallup, Nisqually, and Skokomish systems. Recovery potential is further uncertain because it will depend on the adaptability of introduced stocks. We know that current productivity is very low in these systems, and believe there is strong evidence that habitat condition is a significant cause. The additive risk of hatchery-related fitness loss is uncertain, but we assume that productivity will not recover significantly until the habitat constraints are addressed. Reliable assessments of the effectiveness of habitat restoration and protection efforts which are ongoing in most watersheds will not be available for, perhaps, decades.

With these circumstances in mind, the strategy of this harvest management plan is to maintain current abundance for most populations and, for more healthy and productive MUs, to increase escapements up to or above the optimum levels defined by productivity associated with current habitat condition. Additional harvest constraints are triggered to provide further protection to populations in critical status. However, we are concerned that the additional constraints to harvest defined by this plan, for fisheries under the direct jurisdiction of the Puget Sound co-managers, absent immediate and effective measure to address habitat constraints, will not materially lower the risk of extinction for these populations.

The prudent course is to experimentally implement different recovery strategies suited to local conditions and population status. Fundamental to these approaches is our intent to set or adjust ER ceilings in logical sequence, informed by demonstrated improvements in productivity resulting from the restoration of habitat function and improvements in fitness due to local adaptation of natural production resulting from hatchery reform for stocks in each watershed. For populations dependent on introduced stocks for recovery, we will begin implementing two experimental recovery strategies within the duration of this Plan.

Comprehensive habitat restoration and protection measures have already been implemented in the Nisqually watershed. With near-term improvement in habitat function likely, harvest rates will be sequentially reduced, and harvest management measures implemented in the terminal fishery, to enable achieving a specific MSY escapement objective, defined in terms of natural-origin fish. The
contribution of first-generation hatchery fish to natural spawning will be controlled with a mainstem weir.

The strategy for Nisqually Chinook envisions higher harvest rates on hatchery production as the total exploitation rate on natural origin production transitions to an ER ceiling below 50% (i.e., substantially lower than the last ten years). The differential for natural-origin production will be achieved by selective fisheries and re-structuring of the in-river tribal net fishery regulatory regime (possibly also involving selective fishing methods). Subsequent further reduction in the ER ceiling may be implemented if the initial strategy is shown to result in higher productivity or if escapements are demonstrated to not fully utilize habitat capacity.

A markedly different strategy will be initiated to recover historical Chinook life histories in the Skokomish watershed. There is substantial evidence the introduced Green River-origin stock may not achieve recovery objectives. An early-timed stock will be introduced first into the North Fork Skokomish, then subsequently into the South Fork, supported by a hatchery recovery program. Harvest on the extant, introduced fall-timed Skokomish natural Chinook will be restricted by an ER ceiling of 50% (substantially lower than recent year exploitation rates) to maintain current abundance. Objectives for the extant stock may be modified in the future, as the Comprehensive Skokomish Chinook Recovery Plan is developed and implemented.

Management Units in Critical Status

Annual pre-season fisheries planning will respond to the status (i.e., projected spawning escapement) of individual populations at or near critical abundance. The FRAM projects natural escapement for MUs that consist of more than one population. In these cases, escapement can be projected for individual populations by reference to abundance forecasts or other historical data. If these projections indicate the escapement for any one population in a complex MU will be lower than its Low Abundance Threshold, either further harvest constraints to increase escapement above the LAT, or the critical ER ceiling, will be implemented.

Critical or near-critical status is expected to persist for the North/Middle Fork and South Fork Nooksack, South Fork Stillaguamish, and Mid-Hood Canal populations, requiring additional constraint of SUS fisheries, and hatchery recovery programs to ensure their persistence.

Chinook-directed fisheries in the terminal areas for these populations have been closed, except for tribal C\&S harvest in the Nooksack River and Stillaguamish River. Pre-terminal SUS fishery impacts have been held to low levels: $1-4 \%$ for the Nooksack, $6-7 \%$ for the Stillaguamish, $5-$ 8% for Mid Hood Canal, and $2-4 \%$ for the Dungeness and Elwha MUs. To the extent that escapement for these populations has fluctuated or declined in recent years, factors other than harvest mortality in SUS fisheries have been the apparent cause.

Exploitation Rates and Escapement Trends

In the mid-1990s, prior to listing, the co-managers implemented harvest conservation measures in response to declining returns of certain stocks. Total or SUS ER ceilings were implemented in the 2001 and 2004 versions of this Plan. SUS ERs most MUs have fallen substantially relative to the late 1990s (Table 13). SUS ERs for the Nisqually and Skokomish MUs will decline further under this Plan. In some cases the reduction in SUS harvest was offset by increasing interception in northern fisheries.

Table 13. Southern U.S. fishery exploitation rates for Puget Sound Chinook (post-season FRAM estimates A. Hagen-Breaux WDFW, pers comm December 22, 2010).

	2001	2002	2003	2004	2005	2006	2007	2008	Avg	Avg
Nook	5%	2%	3%	4%	4%	5%	5%	3%	7%	4%
Skagit SF	8%	12%	8%	6%	10%	9%	13%	17%	17%	10%
Skagit Spr	21%	15%	13%	11%	13%	12%	10%	15%	32%	14%
Stillaguamish	16%	11%	11%	7%	9%	8%	17%	5%	27%	10%
Snohomish	16%	17%	12%	10%	13%	16%	19%	10%	32%	14%
Lk Washington	12%	9%	12%	12%	13%	20%	16%	17%	19%	14%
Green	22%	34%	28%	31%	19%	29%	38%	38%	30%	30%
White	16%	12%	12%	20%	12%	22%	11%	16%	29%	15%
Puyallup	62%	57%	47%	52%	36%	29%	30%	29%	48%	43%
Nisqually	65%	65%	67%	56%	46%	67%	60%	63%	74%	61%
Skokomish	41%	36%	41%	33%	27%	43%	49%	46%	31%	40%
Mid Hood Canal	11%	8%	8%	12%	7%	8%	11%	8%	28%	9%
Dungeness	3%	5%	5%	4%	2%	3%	5%	4%	13%	4%
Elwha	3%	5%	6%	4%	3%	3%	4%	4%	12%	4%

The effect of harvest constraint is manifest in the increasing escapement trend for most Puget Sound MUs (Table 14). We assessed fifteen-year escapement trends from median values in successive 5year periods, and concluded the trend (i.e., the slope of the trend line) was biologically significant if the slope exceeded 5% of the y-intercept (Geiger and Zhang 2002). Of the 22 Chinook populations comprising the Puget Sound ESU, 14 exhibit positive escapement trends over the past fifteen years (1994-2008), all but one trend is biologically significant. Five populations exhibit negative trends, but none are significant. Trends for three populations were not assessed because they lack a 15-year time series of escapement estimates.

Table 14. Fifteen-year (1994-2008) trends in natural spawning escapement for Puget Sound Chinook populations.

MU	Population	15-year trend	
		slope	slope/yo
Nooksack	North / Middle Fk	N/A	
	South Fork	N/A	
Skagit spring	Suiattle	-6.0	0.01
	Upper Sauk	41.0	0.31
	Cascade	15.5	0.09
Skagit S/F	Lower Sauk	24.3	0.06
	Upper Skagit	1026.7	0.40
	Lower Skagit	218.6	0.50
Stillaguamish	North Fork	10.5	0.01
	South Fork - MS	-7.9	0.03
Snohomish	Skykomish	279.5	0.14
	Snoqualmie	152.8	0.24
Lake Washington	Sammamish	N/A	
	Cedar River	32.6	0.13
Green		-23.6	0.00
White		163.4	8.51
Puyallup		-29.4	0.01
Nisqually		136.2	0.42
Skokomish		21.4	0.05
Mid Hood Canal		-12.2	0.04
Dungeness		90.4	0.46
Elwha		30.5	0.02

6.3 Equilibrium Exploitation Rates

Managing harvest under exploitation rate ceilings, based on quantified natural productivity, assures stable or increasing escapement for those management units. The underlying recruitment function, which is based on current performance, predicts that productivity declines as abundance (escapement) increases, such that for any level of escapement an exploitation rate may be identified that assures replacement of the parent brood. Setting the exploitation rate objective conservatively, with a view to recent abundance, assures a high probability that escapement will trend upward. The following analysis illustrates this concept for the Skagit River summer / fall and spring management units.

The equilibrium exploitation rate at each level of spawning escapement (i.e., the exploitation rate that would, on average, maintain the spawning escapement at the same level) was calculated from the Ricker spawner-recruit parameters used in the ER ceiling derivation for each management unit. These equilibrium rates are represented by the curve that forms the border between the shaded and white regions in Figure 6 and Figure 7. Note that, due to declining productivity, the equilibrium ER decreases as escapement increases. In the region below this curve (i.e., the exploitation rate is lower than the equilibrium rate that applies to that level of spawning escapement), escapement should, on average, increase in the next cycle. In the region above this curve, escapement should, on average, decrease in the next cycle.

Figure 6. The equilibrium exploitation rate, at each escapement level, for Skagit spring Chinook.

Figure 7. The equilibrium exploitation rate, at each escapement level, for Skagit summer/fall Chinook.

For Skagit Chinook, the NMFS' "viable threshold" is the same thing as the "rebuilding escapement threshold" that was used in the ER ceiling analyses and derivations. For Skagit spring Chinook, this is the MSY escapement level of about 850 , which was derived from the Ricker spawner-recruit parameters that were used in the ER ceiling analysis (Figure 6). The Limit 6 "critical threshold", however, is NOT the same thing as the "critical threshold" defined in this plan - the Limit 6 threshold is a point of instability below which the spawner-recruit relation destabilizes and the risk of extinction increases greatly. The low abundance threshold in this plan, in contrast, is a buffered level that is set sufficiently above the point of instability that the risk of getting an escapement below the point of instability, through management error or uncertainty, is low. The critical threshold for Skagit spring Chinook, in this plan, is 576 spawners; the point of instability (i.e., the Limit 4 "critical threshold"), calculated using the Ricker parameters from the ER Ceiling analysis and Peterman's (1977) rule-of-thumb, (i.e., that the point of instability is 5% of the replacement level), would be about 110 spawners (Figure 6).

The plan mandates that, if escapement is projected to fall below the LAT, SUS fisheries will be constrained to exert an exploitation rate less than or equal to the CER ceiling, though the total exploitation rate may range higher, as shown in the crosshatched region in Figure 6, due to northern fisheries. For Skagit spring Chinook, when abundance is between the point of instability and the viable threshold, this plan's ER ceiling is well within the region of increasing escapement (Figure 6), which satisfies the criterion that the plan must allow abundances in this range to increase to the viable level. In fact, even ER's significantly above the ER ceiling satisfy this criterion. For
escapements greater than the viable threshold, the ER ceiling allows for increasing escapements up to the point where the ER ceiling intersects the equilibrium ER curve. This occurs at an escapement of about 1700 (Figure 6). For escapements above that level, if harvest met the ER ceiling each year (which is not what is expected under this plan), escapements would tend to decrease in the next cycle; however, they would be expected to stabilize around an escapement of about 1700 , which is well above the viable threshold. Thus, the plan also satisfies the criterion that, for escapements above the viable threshold, abundance will, on average, be maintained in that region.

For escapements below the point of instability, recruitments will, by definition, be inconsistent and largely unrelated to the escapement level. This means that harvest management cannot be used effectively to increase escapements above the point of instability. Rebuilding above this level could only be accomplished through fortuitous returns or increase in productivity. This plan deals with abundances below the point of instability largely by trying to prevent abundance from getting that low. For Skagit springs, the trigger for reducing SUS impacts to the minimum regime occurs at a threshold of 576, which is over 5 times higher than the calculated point of instability, and, at that threshold and exploitation rate, is well within the region of increasing escapement (Figure 6). In the event that abundance falls below the point of instability, and then was followed by a fortuitous recruitment that exceeded that level, the ceiling exploitation rate is low enough that equilibrium momentum will tend to increase the escapement further, rather than reduce it to below the point of instability again. Thus, this plan should not increase the genetic and demographic risk of extinction for Skagit springs. In practical application, the lowest observed Skagit spring Chinook escapement has been 470 (in 1994 and 1999), which is over 4 times higher than the calculated point of instability - escapements have exceeded 1,000 during 4 of the last 5 years, which is higher than the viable threshold, and again indicates that this plan should not increase the genetic and demographic risk of extinction for Skagit springs.

Exploitation rates below the curve should, on average, result in higher escapements on subsequent cycles; exploitation rates above the curve should, on average, result in lower escapements on subsequent cycles. Equilibrium rates were calculated from the Ricker parameters that were used for the ER Ceiling analysis used to set the ER ceiling for the Skagit spring Chinook management unit. The MSY exploitation rate (MSY ER), ER ceiling, and CER ceiling, and three escapement levels the calculated point of instability, the low abundance threshold (LAT), and the rebuilding escapement threshold (RET), are marked for reference (Figure 6).

For Skagit summer/fall Chinook, the rebuilding escapement threshold is approximately 8500 spawners; the low abundance threshold is 4800; and the calculated point of instability is approximately 1100. As with Skagit springs, in the range between the point of instability and the MSH escapement level, the ER ceiling is well within the region of increasing escapement (Figure 7), which satisfies the criterion that the plan must allow abundances in this range to increase to the viable level. For escapements greater than the calculated MSH level, the ER ceiling allows for increasing escapements up to an escapement of about 13,500 (Figure 7). If escapement was higher than that, and harvest met the ER ceiling each year (which, again, is not what is expected under this
plan), escapements would be expected to stabilize around an escapement of about 13,500 , which is well above the viable threshold. Thus, this plan also satisfies the criterion that, for escapements above the viable threshold, summer/fall abundance will, on average, be maintained in that region.

Exploitation rates below the curve should, on average, result in higher escapements on subsequent cycles; exploitation rates above the curve should, on average, result in lower escapements on subsequent cycles. Equilibrium rates were calculated from the Ricker parameters that were used for the ER Ceiling analysis used to set the ER ceiling for the Skagit summer/fall Chinook management unit. The MSY exploitation rate (MSY ER), ER ceiling, and CER ceiling, and three escapement levels - the calculated point of instability, the low abundance threshold (LAT), and the rebuilding escapement threshold (RET), are marked for reference (Figure 7).

As previously noted for Skagit spring Chinook, the combined impacts from northern fisheries and constrained SUS fisheries, that would be implemented if the summer / fall unit were to decline to critical status, would be expected to exert total exploitation rates well below the equilibrium rate, and assure higher subsequent escapement well below the equilibrium ER that applies to escapements between the LAT and the point of instability, so, on average, equilibrium pressures would force escapement to increase.

As with spring Chinook, it is not possible to project any relation between escapement and recruitment for escapements below the point of instability. To prevent summer/fall escapements from falling below this level, the trigger for reducing SUS impacts to the minimum regime occurs at a threshold of 4800 , which is over 4 times higher than the calculated point of instability, and, at that threshold and exploitation rate, is well within the region of increasing escapement (Figure 7). The same equilibrium momentum would, on the next cycle, tend to increase escapements further, rather than reduce them, if escapement did drop below the point of instability and then experienced a fortuitous recruitment. In terms of actual observations, the lowest observed Skagit summer/fall Chinook escapement has been 4900 (in 1997 and 1999), which is over 4 times higher than the calculated point of instability, and escapement has exceeded 11,000 during each of the last 9 years, which is well above the RET. Thus, for Skagit summer/fall Chinook, this plan should not increase the genetic and demographic risk of extinction.

6.4 Recovery Goals

The Washington co-managers identified recovery goals for 16 Chinook populations, based on assessment of the potential productivity associated with recovered habitat conditions (Table 15). These interim planning targets are intended to assist local governments, resource management agencies, and public interest groups with identifying harvest and hatchery management changes, and habitat protection and restoration measures necessary to achieve recovery in each watershed and the ESU as a whole. Recovery goals are expressed as a range of natural-origin or natural spawning escapement and associated recruitment rates (i.e. adult recruits per spawner). The lower boundary represents the number of spawners that will provide maximum surplus production (i.e. MSH) under
properly functioning habitat conditions, assuming recent marine survival rates. The prudent course is to experimentally implement different recovery strategies suited to local conditions and population status. Fundamental to these approaches is our intent to set or adjust ER ceilings in logical sequence, informed by demonstrated improvements in productivity resulting from the restoration of habitat function and improvements in fitness due to local adaptation of natural production resulting from hatchery reform for stocks in each watershed.

Table 15. Escapement levels and recruitment rates for Puget Sound Chinook populations, at MSH and at equilibrium, under recovered habitat conditions.

	High Productivity Target (R / S)	Equilibrium Target	Equilibrium Abundance Range
NF Nooksack	$3800(3.4)$	16,000	$16,000-26,000$
SF Nooksack	$2000(3.6)$	9,100	$9,100-13,000$
Lower Skagit	$3900(3.0)$	16,000	$16,000-22,000$
Upper Skagit	$5380(3.8)$	26,000	$17,000-35,000$
Lower Sauk	$1400(3.0)$	5,600	$5,600-7,800$
Cascade	$290(3.0)$	1,200	$1,200-1,700$
Suiattle	$160(2.8)$	610	$600-800$
Upper Sauk	$750(3.0)$	3,030	$3,000-4,200$
NF Stillaguamish	$4000(3.4)$	18,000	$18,000-24,000$
SF MS Stillaguamish	$3600(3.3)$	15,000	$15,000-20,000$
Skykomish	$8700(3.4)$	39,000	$17,000-51,000$
Snoqualmie	$5500(3.6)$	25,000	$17,000-33,000$
Sammamish	$1000(3.0)$	4,000	$4,000-6,500$
Cedar	$2000(3.1)$	8,200	$8,200-13,000$
Green	N/A	27,000	$17,000-37,700$
Puyallup	$5300(2.3)$	18,000	$17,000-33,000$
Skokomish	N/A	N/A	N/A
Mid Hood Canal	$1,300(3.0)$	5,200	$5,200-8,300$
Nisqually	$3400(3.0)$	13,000	$13,000-17,000$
Elwha	$6,900(4.6)$	17,000	$17,000-30,000$
Dungeness	$1200(3.0)$	4,700	$4,700-8,100$

For most MUs, the upper management thresholds and recent escapements are substantially below the lower end of the recovery range (Table 15), reflecting their different points of reference with regard to habitat quality. Notable exceptions include the Upper Skagit summer, Cascade spring, and Suiattle spring populations, where recent escapement has exceeded the MSH escapement level set as the lower boundary of the recovery goals. These three examples notwithstanding, UMTs established in this plan represent MSH escapement under current habitat conditions, demonstrating that current conditions limit the potential for recovery for most populations.

With the exceptions noted above, these population recovery goals are not of immediate relevance to current harvest management objectives. Because these recovery goals are high enough to support substantial harvest, they may exceed the abundance levels required to delist the ESU. ESU recovery may be possible under more than one combination of recovered populations.

6.5 Harvest Constraint Cannot Effect Recovery

Recovery for most populations cannot be accomplished solely by constraint of harvest. For the immediate future, harvest constraint will assist in providing optimal escapement, suited to current habitat condition. Productivity is constrained by habitat condition, and is not influenced by harvest, providing harvest does not reduce escapement to the point of demographic or genetic instability. The quality and quantity of freshwater and estuarine environment determines embryonic and juvenile survival, and oceanic conditions influence survival up to the age of recruitment to fisheries. Physical or climatic factors, such as stream flow during the incubation period, will vary annually, and have been shown to markedly reduce smolt production in some years. The capacity of Chinook to persist under these conditions is primarily dependent on their diverse age structure and life history, and habitat factors (e.g. channel structure, off-channel refuges, and watershed characteristics that determine runoff) that mitigate adverse conditions.

For several Puget Sound populations, mass marking of hatchery production has enabled accurate accounting of the contribution of natural- and hatchery-origin adults to natural escapement. Sufficient data has accumulated to conclude that a significant reduction of harvest rates, and increased marine survival in some years, has increased the number of hatchery-origin fish that return to spawn, whereas returns of natural-origin Chinook, though stable, have not increased. It is evident that natural production has not increased under reduced harvest pressure, and is constrained primarily by the condition of freshwater habitat. Therefore, the harvest rates governed by this plan are not impeding recovery.

Abundance (escapement) data for the North Fork Stillaguamish population is cited here as an example. Fingerlings released by the summer Chinook supplementation program are coded wire tagged, enabling accurate estimation of their contribution to escapement. Average total exploitation rates (i.e., FRAM validation estimates) for 2001-06 are 40% of the average for the preceding decade. SUS ERs fisheries over the last nine years have fallen 60% compared with the preceding decade (Table 13). The return of hatchery-origin Chinook exhibits an increasing trend over the last 15 years, while natural-origin returns exhibit a declining trend (). The reduction of harvest pressure in SUS fisheries has helped to stabilize escapement, and the listed hatchery recovery program will ensure persistence. Similar conclusions can be drawn from examination of current NOR escapement trends in the North Fork Nooksack, Skykomish, and Dungeness rivers. In these systems, NOR returns have remained at very low levels, while total natural escapement has increased where hatchery supplementation programs exist.

Harvest constraint has, for most populations, contributed to stable or increasing trends in escapement. For many populations this includes a large proportion of hatchery-origin adults. But stable or negative trends in NOR returns strongly suggests that recruitment will not increase substantially unless constraints limiting freshwater survival are alleviated. Spawner-recruit functions for the North Fork Stillaguamish population, under current and recovered habitat conditions, provide an example (Figure 9). Derived from EDT analysis of habitat capacity under current and recovered conditions, they demonstrate that natural production is now constrained to a ceiling level far below that associated with recovery.

Figure 8. Natural and natural-origin spawner abundance in the North Fork Stillaguamish River.

Figure 9. Productivity (adult recruits) of North Fork Stillaguamish summer Chinook under current and recovered habitat (PFC+) conditions. Beverton-Holt functions derived from habitat analysis using the EDT method.

6.6 Protecting the Diversity of the ESU

This Plan conserves the diversity of populations in Puget Sound by enabling some populations to reach their viable thresholds, hold others at stable abundance levels, well above their critical thresholds, and contributing to persistence of those at or near critical abundance. Harvest mortality in SUS fisheries will not significantly increase the risk of extinction for any population.

Conservative management objectives are established for the eight indigenous populations in the Skagit and Snohomish systems where natural production is not dependent on hatchery augmentation. These populations inhabit large watersheds that support diverse life histories. The Plan emphasizes protection of these populations

Exploitation rate ceilings for the Skagit summer/fall, Skagit spring, Stillaguamish summer, and Snohomish populations reflect low risk of decline to critical status and high probability of achieving MSY escapement. Should abundance of any of these populations decline to the LAT, ceiling exploitation rates for SUS fisheries would be reduced. This lower exploitation rate would be well below the equilibrium ER (see section 7.4) that applies to escapements between the LAT and the point of instability, so, on average, equilibrium pressure would force escapement to increase. The ER ceiling provides similar assurance that escapement will achieve the level associated with optimum productivity (MSH). Escapement will increase, even at exploitation rates higher than the ER Ceiling, according to the equilibrium exploitation rate assessment, so the ER ceiling assures not impeding rebuilding. Furthermore, annual target exploitation rates for these populations are expected to be lower than their respective ER ceilings, further improving the probability that escapement will increase or remain at optimum levels.

Abundance is supplemented by hatchery production for indigenous populations in the North/Middle Fork and South Fork Nooksack, North and South Fork Stillaguamish, Skykomish, White, Green, Elwha, and Dungeness rivers. Local hatchery production assures persistence of non-indigenous populations in the Puyallup, Nisqually, and Skokomish rivers. Hatchery programs maintain natural production and enhance harvest opportunity, while natural production is severely constrained by habitat condition, Fishery constraints are expected to maintain the current status of most of these populations, well above their low abundance thresholds

For the populations whose abundance has been at critical or near-critical levels in recent years (i.e. in the North/Middle Fork and South Fork Nooksack, South Fork Stillaguamish, Mid Hood Canal, and Dungeness) harvest constraints will reduce extinction risk. The resulting low harvest mortality in SUS fisheries will not influence the potential for these populations to rebuild. Hatchery recovery programs are operating in these systems to ensure persistence. Rebuilding the naturally-produced abundance of these populations requires alleviating habitat constraints.

The Plan's constraints on harvest assure that the majority of increase in abundance associated with favorable survival will accrue to escapement. Implementation of the HMP will enable escapements
higher than the current MSH level, to capitalize on the production opportunity provided by favorable, higher freshwater survival conditions. For populations with more uncertain current productivity, implementation will provide stable natural escapement (in many cases considerably higher than the optimum level likely under current conditions) to preserve options for recovering production throughout the ESU in the long term.

In summary, the Plan provides assurance that most populations will continue to rebuild or persist at their current abundance. The recovery potential for introduced populations to achieve recovery is uncertain. Two innovative strategies will be implemented under this plan, to improve the fitness of the introduced stock in the Nisqually, and to introduce a stock with higher recovery potential in the Skokomish. Critically depleted populations are subject to higher extinction risk, but harvest constraint and local hatchery recovery programs will enable their persistence.

6.7 Summary of Conservation Measures

1. Exploitation rates have been substantially reduced from past levels. The ER ceilings and implementation rules in this Plan will perpetuate these lower ER's.
2. Exploitation rate ceilings established for each management unit have resulted in stable spawning escapement for most populations under current habitat constraints
3. Exploitation rate ceilings are allowable maximums, not annual targets for each management unit. Under current conditions most management units are not producing a harvestable surplus, as defined by this plan, so weak stock management procedures implemented to conserve the least productive MUs will result in ERs below the ER ceilings for other MUs.
4. If a harvestable surplus is projected for any management unit, that surplus will only be harvested if a fishing regime can be devised that is expected to exert an appropriately low incidental impact on weaker commingled populations, so that their conservation needs are fully addressed.
5. Total exploitation rate ceilings are set for eight MUs. If interceptions in Canadian or Alaskan cause exceedence of those ceilings, the lower SUS ER ceilings, otherwise implemented due to critical status, will be implemented to increase escapements.
6. If escapement is projected to below the low abundance threshold, SUS fisheries exploitation rate will be further reduced to the CER ceiling. The low abundance thresholds are intentionally set at levels substantially higher than the critical threshold (i.e. the point of biological instability), so that fisheries conservation measures are implemented to reduce the likelihood of abundance falling further to the critical threshold.
7. Under all status conditions, whether critical or not, the co-managers maintain the prerogative to implement conservation measures that reduce fisheries-related mortality farther below any ceiling stated in this Plan. Responsible resource management will take into account recent trends in abundance, freshwater and marine survival, and management error for any unit..

7. Monitoring and Assessment

The abundance (spawning escapement), hatchery- and natural-origin components of escapement, and age composition of Puget Sound Chinook populations will be monitored. This information is essential to assessing abundance trends and survival rates, and forecasting abundance for the purposes of harvest management. For some populations, smolt production will be estimated, to monitor freshwater survival. These data are also applicable to planning and monitoring the effectiveness of habitat restoration, and to hatchery management.

Mortality associated with certain monitoring and research activities (e.g. test fisheries and update fisheries), that primarily inform in-season harvest management decisions, will be accounted with other fishery related mortality under the ER ceilings defined for each MU. Mortality associated with other research and monitoring, which have broader applicability to stock assessment, will not be accounted under the ER ceilings, Mortality in this latter category will not exceed a level equivalent to 1% of the estimated annual abundance (i.e. 1% ER), for any MU.

7.1 Catch and Fishing Effort

Commercial, ceremonial, and subsistence, harvest, and test fisheries, in Washington catch areas 1 13 , and associated subareas and freshwater areas, are recorded on sales receipts ('fish tickets'), and compiled in a jointly maintained database. Harvest of these types occurs primarily between May and October (with the exception of tribal winter troll harvest in the Strait of Juan de Fuca). Catch is monitored in-season for all fisheries.

The WDFW estimates recreational landed catch by analysis of a randomly selected subset of Catch Record Cards (CRC), which are required of all license holders. The baseline sampling program for recreational fisheries provides auxiliary estimates of species composition, effort, and catch per unit effort (CPUE) to the Salmon Catch Record Card System. The baseline sampling program is geographically stratified among Areas 5-13 in Puget Sound. For this program, the objectives are to sample 120 fish per stratum for estimation of species composition, and 100 boats per stratum for the estimation of CPUE. This analysis also utilizes data collected by angler interviews in marine areas. Compilation and analysis of these data produces preliminary estimates of management year (May April) catch by July of the following year.

For some recreational fisheries managed under catch quotas, catch and effort is monitored by creel surveys. In-season catch estimates are produced for coastal areas $1-4$, some Puget Sound marine areas (varies by year), and certain freshwater Chinook fisheries including, in recent years, fisheries in the Skagit, Skykomish, Carbon, and Skokomish rivers. Creel sampling regimes have been developed to meet acceptable standards of variance for estimates of weekly catch.

Non-landed mortality of Chinook is significant for commercial troll, recreational hook-and-line fisheries. Regulations for these fisheries may require release of sub-adult Chinook, or all Chinook, during certain periods. Studies are conducted to estimate encounter rates and hooking mortality for these fisheries. Estimates of encounter rates will be derived from on-board observations, angler interviews at landing ports or marinas, and remote observation of some recreational fisheries, These findings are used to validate, or adjust, the encounter rates and release mortality rates used in the FRAM. 'Drop-out' mortality in gillnet fisheries is accounted as 3% or 2% of landed catch in preterminal and terminal fisheries, respectively. Chinook non-retention regulations govern certain non-Treaty seine fisheries; WDFW monitors Chinook encounters in these fisheries.

Sampling terminal-area fisheries to collect biological information about mature Chinook has been prioritized. Collection of scales, sex, and length data will supplement similar information collected from spawners to characterize the age and size composition of the local population.

7.2 Spawning Escapement

Chinook escapement is estimated annually for each population. A variety of sampling and computational methods are used to calculate escapement, including cumulative redd counts, peak counts of live adults, cumulative carcass counts, and integration under escapement curves drawn from a series of live fish or redd counts. Weirs or traps operated to count escapement in some rivers. General methods for estimating escapement were presented in the 2004 plan (PSIT and WDFW 2004). Updated description of methods used for Puget Sound systems will be included in the annual performance reports (see below).

Sampling is prioritized to estimate the proportions of hatchery- and natural-origin adults in natural spawners, for all populations. Sampling carcasses on the spawning grounds, at hatchery racks, and at traps or weirs, provides information to characterize age composition, sex ratio, and origin of spawners. CWTs and analysis of otoliths, with external marks (i.e. adipose of ventral fin clips) are used to identify hatchery-origin adults. Sex and length data, and fecundity estimated from a subsample of adults used for hatchery broodstock, will further characterize adult returns.

7.3 Abundance and Exploitation Rates

Estimates of spawning escapement and its age composition, and of fishery exploitation rates enable reconstruction of cohort abundance. After adjustment to account for non-landed and natural mortality, these estimates of recruitment define the productivity of specific populations. The intent of the current Chinook harvest management regime is to set management unit objectives based on the current productivity of their component populations. These objectives will change over time, therefore, in response to change in productivity.

Cohort reconstruction is contingent on availability of data for estimating harvest mortality, as described below, and accurate estimates of spawning escapement, hatchery and natural components
of natural escapement, and age composition, Deriving a recruitment function typifying recent productivity ideally requires a lengthy times series, representing a broad range of escapement and recruitment. It is not certain that productivity is stationary, perhaps violating the assumption underlying recruitment functions. Data gaps will preclude this exercise for many populations, until longer time series of data accumulate.

Indicator stock programs, using local hatchery production, have been developed for many Puget Sound populations, as part of a coast-wide program established by the Pacific Salmon Commission. These include Nooksack River early, Skagit River spring, Stillaguamish River summer, Green River fall, Nisqually River fall, Skokomish River fall, and Hoko River fall stocks. Additional indicator stocks are being developed for Skagit River summer and fall, and Snohomish summer stocks. Indicator stocks have the same genetic and life history characteristics as the wild populations that they represent. Indicator stock programs are intended to release 200,000 tagged juveniles annually, so that tag recoveries will be sufficient for accurate estimation of harvest distribution and fishery exploitation rates.

Commercial and recreational catch in all marine fishing areas in Washington is sampled to recover coded-wire tags. For commercial fisheries, the objective is to sample at least 20% of the catch in each area, in each statistical week, throughout the fishing season. For recreational fisheries, the objective is to sample 10% of the catch in each month / marine area stratum. Based on recent performance, sampling objectives will be consistently achieved for most catch area / time strata, and shortfalls addressed, contingent on staff resources (WFDW and PSIT 2008, WDFW and PSIT 2009)). Mass marking of hatchery-produced Chinook, by clipping the adipose fin, has necessitated electronic sampling of catch and escapement to detect coded-wire tags.

Harvest exploitation rates estimated from CWT recoveries are generally considered accurate, if sampling occurs consistently at recommended rates, sufficient tags are recovered, and age composition is accurately determined. Standardized procedures enable calculation of total, agespecific fishing mortality in specific fisheries, if there are sufficient tag recoveries. These estimates of fishery mortality may be compared with those made by the fishery simulation model (FRAM) to check model accuracy. The FRAM may incorporate forecast or actual abundance and catch, which are scaled against base-year abundance and fisheries. It is recognized that the model cannot perfectly simulate the outcome of the coast-wide Chinook fishing regime, so, periodically, the bias in simulation modeling will be assessed. The migration routes of Chinook populations may vary annually, and the effect of changing fisheries regulations cannot be perfectly predicted in terms of landed or non-landed mortality.

Mark-selective fisheries, if implemented on a large scale, will exert significantly different landed and non-landed mortality rates on marked and unmarked Chinook populations. Accurate postseason assessment of age- and fishery-specific harvest mortality, through a gauntlet of non-selective and mark-selective fisheries, represents a daunting technical challenge, particularly due to the complex age structure of Chinook. Release of double index CWT groups (i.e. equal numbers of
marked (adipose clipped) and unmarked fish containing distinct tag codes) has been initiated for many indicator stocks, as a means of maintaining the objectives of the coast-wide CWT indicator stock programs. Analyses are in progress to assess if the accuracy of exploitation rates is significantly reduced.

7.4 Smolt Production and Survival

Smolt traps are operated in the Nooksack, Skagit, Stillaguamish, Skykomish, Snoqualmie, Puyallup, Nisqually, Skokomish, Dungeness, and Elwha rivers to estimate smolt production and survival. Methods and locations of smolt trapping studies are described in detail elsewhere (e.g. Seiler et al. 2002), but in general, traps are operated through the outmigration period of Chinook. By sampling a known proportion of the channel cross-section, with experimental determination of trapping efficiency, estimates of the total production of smolts are obtained. Smolt production may inform abundance forecasting, test the influence of environmental parameters on survival, and monitor the effectiveness of habitat restoration programs.

Survival of juvenile Chinook is highly dependent on conditions in the estuarine and near-shore marine zones. Studies continue to indicate that smolt survival through the transition period as smolts adapt to the marine environment is a key determinant of recruitment.

7.5 Annual Management Review

The performance of the fishery management regime will be evaluated annually, to assess whether management objectives were achieved, and identify the factors contributing to deviations from projected catch and escapement. A concise summary of previous year escapement and landed catch, compared to pre-season projections, will be distributed in February. Escapement estimates from the previous year, combined with terminal-area catch to estimate terminal runsize, are incorporated into abundance forecasts for some MUs. The annual report will be completed in May, and include:

Summary of landed net and troll catch and in-season management

Tables will compare expected and observed catch for commercial, ceremonial, subsistence, and test fisheries in coastal areas and Puget Sound (Areas 1-13, associated sub-areas and freshwater areas), by region, for the preceding management year. Accompanying narrative will describe in-season management decisions, particularly the significant deviations from pre-season regulatory structure.

Recreational landed catch

Tables will compare projected and observed landed catch for the previous management year, for areas where creel surveys have generated catch estimates (i.e. typically, Areas $1-6$ and certain freshwater fisheries). Due to analytical time requirements for Catch Record Card analysis, and
complete analysis of creel survey data, the report will compare projected catch with preliminary CRC estimates, and creel-survey estimates, for all areas the preceding management year.

Non-landed mortality

The annual report will include estimates of encounter rates and non-landed mortality, and associated analyses for monitored recreational and commercial troll fisheries. Preliminary analyses for fisheries in the preceding year will be included in the May report, but full analyses will be reported the next year.

Spawning Escapement

Spawning escapement for all natural management units and populations will be compared to preseason projections and the management thresholds established by this Plan. The annual report will include a tabulation of escapements for the preceding ten years. Available estimates of the hatcheryand natural-origin proportions of natural escapement, from carcass or terminal fishery sampling, will be included in the annual report.

CWT Sampling Rates

A preliminary summary of CWT catch sampling rates for commercial and marine recreational fisheries, with a one-year time lag, will be included in the annual report. These mark - sample files, downloaded from the PSMFC RMIS data system, are subject to subsequent revision as data are regularly updated.

7.6 Retrospective Performance Assessment

Harvest management performance will be periodically assessed by a retrospective analysis of accumulated data and information related to population abundance and productivity, harvest rates, sampling and monitoring objectives. Such an assessment will be completed by July, 2012 to inform revision of the Plan. These reports will include:

- Trends in abundance and/or survival rates for populations derived from time series of natural escapement or runsize, or smolt production.
- Annual ERs for each MU will be estimated every three years by post-season FRAM 'validation' runs, incorporating estimated catch in all coastal fisheries and abundance for all stocks. These ER estimates will be compared with pre-season projections and ER ceilings.
- Annual or brood-year ERs derived from CWT data, or other standardized methods utilized by the PSC Chinook Technical Committee, or similar methods, may provide an alternate assessment of harvest mortality and trends. The retrospective performance assessment will compare FRAM ER
estimates with CWT or other ER estmates and discuss the significance of differences to successful achievement of the harvest plan objectives.
- A discussion of significant and consistent deviations between pre-season projections and observed catch, escapement, or exploitation rates indicative of management error, and the likelihood of reducing bias and management error by improving forecast methods or harvest modeling, or changing management response. This discussion may highlight causative data gaps.
- A compilation of CWT sampling achievements, compared with sampling objectives.
- Description of biological sampling (i.e. collection of scales, otoliths, DNA, and sex and size data) of catch and escapement.
- Age structure of populations from escapement (carcass) or terminal fishery sampling. Productivity re-assessment: updated recruitment functions derived from cohort reconstruction or other methods, applied to re-calibration of escapement thresholds and ER ceilings.
- Such re-assessment will occur, subject to data availability, and if there is evidence in data or analyses used in forecasting, or other information suggesting that survival has changed.
- The Plan and MU Profiles in Appendix A inventory key data gaps that affect harvest management performance. The retrospective assessment will summarize data gaps that have been addressed and update additional requirements.

7.7 Marine-Derived Nutrients from Salmon

Adult salmon provide essential marine-derived nutrients to freshwater ecosystems, as a direct food source for juvenile or resident salmonids and invertebrates, and as their decomposition supplies nutrients to the food web. A body of scientific literature reviewed in Appendix D of the 2004 Plan (PSIT and WDFW 2004) supports the contention that the nutrient re-cycling role played by salmon is particularly important in nutrient-limited, lotic systems in the Northwest. Some studies assert that declining salmon abundance and current spawning escapement levels exacerbate nutrient limitation in many systems. Controlled experiments to test the effect of fertilizing stream systems with salmon carcasses or nutrient compounds show increased primary and secondary productivity, and increased growth rates of juvenile coho and steelhead.

Of relevance to harvest management is whether the management objectives stated in this Plan will result in spawning escapement levels likely to cause or exacerbate nutrient limitation, and thus negatively influence the growth and survival of juvenile Chinook, or otherwise constrain recovery of listed populations. Harvest management strategy will be informed by relevant information as it
emerges, but currently available information does not suggest that nutrient limitation affects Puget Sound Chinook populations in this manner.

The role of adult Chinook must be examined in the context of escapement (i.e. nutrient potential) of all salmon species. In the large river systems that support Chinook, escapements of pink, coho, and chum salmon comprise a large majority of total nutrient input. Changing Chinook escapement, therefore, will not increase nutrient loading significantly

Natural escapements of Chinook, and of substantially more abundant pink and chum salmon, have varied widely without apparent correlation with survival of Chinook during their freshwater life history. Post-emergent survival of juvenile Chinook is undoubtedly affected by a complex array of other biotic and physical factors. The incidence and magnitude of peak flow during the incubation season, for example, is correlated very strongly with outmigrant smolt abundance in the Skagit River and other Puget Sound systems (Seiler et al. 2000).

The fertilizing influence of salmon carcasses on Chinook depends on a complex array of factors, including their proximity to Chinook rearing areas, the influence of flow and channel structure on the length of time carcasses are retained, and Chinook life history.

Nutrients derived from increased escapement will predominantly benefit juvenile from that brood year. Spawner - recruit analyses will reflect the potential effect of nutrient loading on productivity. Regular updating of the spawner - recruit function is mandated by this plan, and will detect changes in productivity that result from widely variable, and in some systems, increasing, nutrient loading associated with spawning escapement of all salmon.

Further study of the potential for nutrient limitation of Chinook growth and survival is warranted. Studies should be designed and implemented to test nutrient limitation hypotheses in several Chinook-bearing systems, and in smaller tributary systems that allow controlled experimental design. These studies should include monitoring secondary production of aquatic macroinvertebrates, fingerling condition, smolt abundance and survival to adulthood, under controlled experiments that isolate the effect of carcass nutrient loading. They will be difficult to design and implement, such that results are not confounded by the complexity of physical factors and trophic dynamics freshwater systems. Such studies may, ultimately, lead to quantifying nutrient loading thresholds where effects on Chinook growth and survival are evident, to guide harvest management.

Manipulating spawning escapement or supplementing nutrient loading with surplus hatchery returns will require resource management agencies to consider benefits and potential negative effects from a wider policy perspective. Artificial nutrient supplementation, despite its potential benefits to salmon production, contradicts the long-standing effort to prevent eutrophication of freshwater systems. Use of surplus carcasses from hatcheries also has serious potential implications for disease transmission.

Public policy will, therefore, have to be carefully crafted to meet potentially conflicting mandates to protect water quality and restore salmon runs (Lackey 2003).

7.8 Selective Effects of Fishing

Commercial and recreational salmon fisheries exert some selective effect on the age, size, and sex composition of mature adults that escape to spawn. The location and schedule of fisheries, the catchability of size and age classes of fish associated with different gear types, and the intensity of harvest determine the magnitude of this selective effect. In general, hook-and-line and gillnet fisheries are thought to selectively remove older and larger fish. To the extent maturation and growth rates are genetically determined, subsequent generations may be include fewer oldermaturing or faster-growing fish. Fishery-related selectivity has been cited as contributing to longterm declines in the average size of harvested fish, and the number of age- 5 and age- 6 spawners. Older, larger female spawners are believed to produce larger eggs, and dig deeper redds, which may improve survival of embryos and fry.

There is no evidence of long-term or continuing trends in declining size or age at maturity for Puget Sound Chinook. Available data suggest that the fecundity of mature Skagit River summer Chinook has not declined from 1973 to the present (Orrell 1976; Musselwhite and Kairis 2009). The age composition of Skagit summer / fall Chinook harvested in the terminal area has varied widely over the last 30 years, particularly with respect to the proportions of three and four year-old fish, but there is no declining trend in the contribution of five year-olds, which has averaged 15 percent (Henderson and Hayman 2002; R. Hayman, SSC December 9, 2002, personal communication). More detailed discussion and analysis of size-selective effects on Puget Sound Chinook were included in Appendix F of the 2004 Puget Sound harvest plan (PSIT and WDFW 2004) and the NEPA EIS developed by the NMFS (NMFS 2004) in review of the 2004 plan.

8. Amendment of the Harvest Management Plan

The Plan will continue to evolve. It is likely that monitoring and assessment methods and tools will improve to more accurately quantify population abundance and productivity. As new information becomes available the co-managers will periodically reassess management guidelines and harvest strategies, in response to changes in the status and productivity of Chinook populations. If the Plan is amended, changes will be submitted to the NMFS for evaluation, well in advance of their implementation.

9. Glossary

Adult Equivalence - Discount of fishing mortality of age 2 and 3 fish that would otherwise succumb to natural mortality before they mature.

Cohort Analysis - Reconstruction of brood-year recruits, conventionally as the abundance of a population or management unit prior to the occurrence of any fishing mortality. The calculation sums spawning escapement, fisheries-related mortality, and adult natural mortality.

Low abundance threshold - A spawning escapement level, set above the point of biological instability, which triggers extraordinary fisheries conservation measures to minimize fishery related impacts and increase spawning escapement.

Diversity - Diversity is the measure of the heterogeneity of the population or the ESU, in terms of the life history, size, timing, and age structure. It is positively correlated with the complexity and connectivity of the habitat.

Escapement - The number of adult salmon that survive fisheries and natural mortality, comprising potential natural spawners or returns to a hatchery.

Exploitation Rate (ER) - Total mortality in a fishery or aggregate of fisheries divided by the sum of total fishing and natural mortality plus escapement.

Fishery - Harvest by specific gear type(s) in a specific geographical area (sometimes comprised of more than one salmon Catch Area, during a specific period of time. A fishery if often characterized by its principal target species.

Harvest Rate - Total fishing mortality, in some cases of a specific stock divided by the abundance in a given fishing area at the start of a time period.

Management Period - Based on information about migration timing, the management period is the time interval during which a given species or management unit may be targeted by fishing in a specified area

Maximum Sustainable Harvest (MSH) - The maximum number of fish of a management unit that can be harvested on a sustained basis, such that spawning escapement will optimize productivity.

Non-landed Mortality - Fish not retained that die as a result of encountering fishing gear. It includes a proportion of sub-legal fish that are captured and released, hook-and line drop-off, and net drop-out mortality.

Point of instability - that level of abundance (i.e., spawning escapement) that incurs substantial risk to demographic or genetic integrity.

Population - For the purposes of the Plan, equivalent to the stocks (see below) delineated by the NMFS Technical Recovery Team as distinct, historically present, independent demographic units within the ESU.

Pre-terminal Fishery- A fishery that harvests significant numbers of fish from more than one region of origin.

Productivity - Productivity is the ratio of the abundance of juvenile or adult progeny to the abundance of their parent spawners; or the rate of change of abundance of a given life stage (usually adults) over time.

Recruitment - Production from a single parent brood year (e.g. smolts or adult returns per spawner).

Stock - a group of fish of the same species that spawns in a particular lake or stream (or portion thereof) at a particular season and which, to a substantial degree, does not interbreed with fish from any other group spawning in a different place or in the same place at a different season.

Terminal Fishery - A fishery, usually operating in an area adjacent to or in the mouth of a river, which harvests primarily fish from the local region of origin, but may include more than one management unit. Non-local stocks may be present, particularly in marine terminal areas.

Viable - In this plan, this term is applied to salmon populations that have a high probability of persistence (i.e. a low probability of extinction) due to threats from demographic variation, local environmental variation, or threats to genetic diversity. This meaning differs from that used in some conservation literature, in which viability is associated with healthy, recovered population status (see McElhany et al. 2000).

10. Literature Cited

Ames, J., and D.E. Phinney. 1977. 1977 Puget Sound Summer-Fall Chinook Methodology: Escapement Estimates and Goals, Run Size Forecasts, and In-season Run Size Updates. Technical Report Number 29, Washington Department of Fisheries. Olympia, Washington. 71 p .

Barclay, M. 1980. 1980 Radio-tagging study of Nooksack spring Chinook. Nooksack and Lummi Tribal Fisheries Departments. Deming, WA. 35pp.

Barclay, M. 1981. Second year radio-tagging study and first year mark and recapture study of Nooksack spring Chinook. Nooksack and Lummi Tribal Fisheries Departments. Deming, WA. 29pp.

Barr, John, G. Blair, G. Kautz, L. Lestelle, J. Miniken, L. Mobrand, E. Salminen, J. Strong, D. Troutt, G. Walter, and T. Willson. 1999. Nisqually Basin Fall Chinook Recovery Plan DRAFT. Nisqually EDT Work Group.

Barrowman, N. J. and R. A. Myers (2000). "Still more spawner-recruitment curves: the hockey stick and its generalizations." Canadian Journal of Fisheries and Aquatic Sciences 57: 665-676.

Beamer, E., R. Bernard, B. Hayman, B. Hebner, S. Hinton, G. Hood, C. Kraemer, A. McBride, J. Musslewhite, D. Smith, L. Wasserman, and K. Wyman. 2005. Skagit Chinook recovery plan 2005. in Puget Sound salmon recovery plan, Vol. II, Local watershed chapters, Skagit chapter. Available at: http://www.sharedsalmonstrategy.org/plan/wpas/skagit.zip

Chinook Technical Committee (CTC). 1996. Joint Chinook Technical Committee 1994 Annual Report, TCCHINOOK (96)-1. Pacific Salmon Commission. Vancouver, British Columbia. 67 pages + appendices.

Chinook Technical Committee (CTC). 1999. Joint Chinook Technical Committee Report 1995 and 1996 Annual Report. Report TCCHINOOK (99)-2. Pacific Salmon Commission. Vancouver, British Columbia. 111p + appendices.

Chinook Technical Committee (CTC). 2002. Catch and Escapement of Chinook Salmon Under Pacific Salmon Commission Jurisdiction, 2001. Pacific Salmon Commission Report TCCHINOOK (02)-1.

Chinook Technical Committee (CTC). 2003. Annual Exploitation Rate Analysis and Model Calibration. Pacific Salmon Commission Report TCCHINOOK (03)-2. Vancouver, British Columbia.

Chinook Technical Committee (CTC). 2006. Report of the Joint Chinook Technical Committee Workgroup on the October 19, 2005 Assignment Given to the Chinook Technical Committee by the Pacific Salmon Commission Regarding the Conduct of Canadian AABM Fisheries. Pacific Salmon Commission Report TCCHINOOK (06)-1. Vancouver, British Columbia.

Chinook Technical Committee (CTC). 2008. 2008 Annual report of catches and escapements, exploitation rate analysis and model calibration. Pacific Salmon Commission Report TCCHINOOK (08)- 2. Vancouver, British Columbia. 271 pages.

Chinook Technical Committee (CTC). 2009. 2009 Annual Report of Catches and Escapements. Pacific Salmon Commission Report TCCHINOOK (09)-1. Vancouver, British Columbia.

Coe, T. and T. Cline. 2009. Nooksack River Watershed Water Temperature Monitoring Program: 2007 and 2008 Data. Nooksack Indian Tribe Natural Resources Department. Deming, WA.

Franklin, I.R. 1980. Evolutionary change in small populations. In M.E. Soule and B.A. Wilcox (eds), Conservation Biology: an evolutionary - ecological perspective. P. 135-149. Sinauer Associates, Sunderland, MA.

Geiger, H.J., and X. Zhang. 2002. A Simple Procedure to Evaluate Salmon Escapement Trends that Emphasizes Biological Meaning over Statistical Significance. Alaska Fishery Research Bulletin 9(2): 128-134.

Harrington-Tweit, B., and K. Newman. 1986. Estimating Chinook Salmon Escapements in the Nisqually River system for the Years 1979-1985. Nisqually Indian Tribe Technical Report No. 14. 11 pages.

Hayman, R., E. Beamer, and R. McClure. 1996. FY 1995 Skagit River Chinook research. Skagit System Cooperative Chinook restoration research progress report \#1, NWIFC Contract \#3311 for FY95. Skagit System Cooperative, La Conner, WA.

Hayman, B. 1999. Calculating the exploitation rate target and floor escapement (for Skagit Chinook). Technical memorandum to the co-managers' Chinook technical workgroup. November 24, 1999. 13 p.

Hayman, B. 2000. Skagit spring Chinook exploitation rate target and escapement floor. Technical memorandum to the co-managers' Chinook technical workgroup, January 19, 2000. Skagit River System Cooperative, La Conner, WA. 98257. 12 p.

Healey, M.C. 1991. Life history of Chinook salmon (Oncorhynchus tshawytscha). Pages 313-393 in C. Groot and L. Margolis, ed. Pacific salmon life histories. University of British Columbia Press, Vancouver, British Columbia.

Henderson, R, and R.A. Hayman. 2002. Fiscal year 2002 Skagit summer Chinook indicator stock study. Final project performance report to the Northwest Indian Fisheries Commission, Contract 3901. 16p.

Hirshi and M. Reed. 1998. Salmon and Trout Life History Study in the Dungeness River. Report to the Jamestown S'Klallam Tribe, Sequim, Washington.

Lackey R.T. 2003. Adding nutrients to enhance salmon runs: developing a coherent public policy. Fisheries 28(8):34-35.

Lande, R. 1995. Mutation and conservation. Conservation Biology 9(4):782-791.
Marshall, A.R. , C. Smith, R. Brix, W. Dammers, J. Hymer, and L. LaVoy. 1995. Genetic diversity units and major ancestral lineages for Chinook salmon in Washington. In Busack, C., and J.B. Shaklee (eds). 1995. Genetic Diversity Units and Major Ancestral Lineages of Salmonid Fishes in Washington. p111-173. Washington Department of Fish and Wildlife Technical Report RAD 95-02.

McElhany, P., M.H. Ruckelshaus, M.J. Ford, T.C. Wainwright, and E.P. Bjorkstedt. 2000. Viable salmonid populations and the recovery of evolutionary significant units. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-42, 158p.

Mobrand Biometrics, Inc. 2003. Development of salmonid recovery plans for the White, Puyallup, Chambers-Clover, and Hylebos watersheds - Strategic priorities for salmon conservation and recovery actions in WRIAs 10 and 12. Vashon, Washington: Mobrand Biometrics, Inc.

Musslewhite, J., and P. Kairis. 2009. FY 2008 Skagit summer Chinook indicator stock study. Skagit System Cooperative Chinook indicator stock prog. rept. No. 22. Final progress performance report to the Northwest Indian Fisheries Commission, Contract \# 3901 for FY 2008. 27 p.

Myers, J.M., R.G. Kope, G.J. Bryant, D. Teel, L.J. Lierheimer, T.C. Wainwright, W.S. Grant, F.W. Waknitz, K. Neely, S.T. Lindley, and R.S. Waples. 1998. Status review of Chinook salmon from Washington, Idaho, Oregon, and California. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-35, 443p.

National Marine Fisheries Service (NMFS). 1999. Endangered and Threatened Species:Threatened Status for three Chinook Salmon Evolutionarily Significant Units in Washington and Oregon, and Endangered Status of one Chinook Salmon ESU in Washington; Final Rule. Federal Register, Vol. 64. No.56, 1999. Pp - 14308-14322.

National Marine Fisheries Service (NMFS). 2000. Endangered Species Act - Reinitiated Section 7 Consultation. Biological Opinion. Effects of Pacific Coast Ocean and Puget Sound Salmon Fisheries During the 2000-2001 Annual Regulatory Cycle. National Marine Fisheries Service, Protected Resources Division. p. 96.

National Marine Fisheries Service (NMFS). 2004. Puget Sound Chinook Resource Management Plan - Final Environmental Impact Statement. NOAA-NMFS Northwest Region. Seattle, WA.

National Marine Fisheries Service (NMFS). 2005a. Endangered and Threatened Species: Final listing determination for 16 ESUs of West Coast salmon, and final 4(d) protective regulations for threatened ESUs. 50 CFR Parts 223 and 224. FRN 70(123):37160-37204 (June 28, 2005).

National Marine Fisheries Service (NMFS). 2005b. Policy on the Consideration of Hatchery-Origin Fish in Endangered Species Act Listing Determinations for Pacific Salmon and Steelhead. 50 CFR Parts 223 and 224. FRN 70(123):37204-37216 (June 28, 2005).

National Marine Fisheries Service (NMFS). 2007. Endangered and Threatened Species; Recovery Plans. 72 FR 2493 (January 19,2007) . Available online at: http://www.nwr.noaa.gov/Publications/FR-notices/2007/upload/72FR2493.pdf

National Marine Fisheries Service (NMFS). 2008. Endangered Species Act Section 7(a)(2) Consultation Biological Opinion and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Consultation, Consultation on the Approval of Revised Regimes under the Pacific Salmon Treaty and the Deferral of Management to Alaska of Certain Fisheries Included in those Regimes. NMFS, Northwest Region. December 22, 2008. 372p. + appendices.

Nisqually Chinook Recovery Team (NCRT). 2001. Nisqually Chinook Recovery Plan. 63 pages + appendices.

Orrell, R. 1976. Skagit Chinook Race Differentiation Study. Proj. Comp. Report to National Marine Fisheries Service, NOAA-NMFS Grant in Aid Program Project No. 1098-R, Wash. Dept. Fisheries, Olympia, WA. 53 p.

Pacific Fishery Management Council (PFMC). 1997. Puget Sound Salmon Stock Review Group Report 1997: An Assessment of Puget Sound Chinook and Strait of Juan de Fuca Coho Stocks as required under the Salmon Fishery Management Plan. Pacific Fishery Mangement council, Portland, Oregon. 85 pages.

Pacific Fishery Management Council (PFMC). 2009. Review of 2008 Ocean Salmon Fisheries. (Document prepared for the Council and its advisory entities.) Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101, Portland, Oregon 97220-1384.

Pacific Salmon Commission (PSC). 2001. 1999/2000 Fifteenth Annual Report. Pacific Salmon Comission, Vancouver, CA. 178 pages.

Peterman, R.M. 1977. A simple mechanism that causes collapsing stability regions in exploited salmonid populations. J. Fish. Res. Board Can. 34:1130-1142.

Pierce County. 2008. Salmon Habitat Protection and Restoration Strategy, WRIA-10 Puyallup Watershed, WRIA-12 Chambers/Clover Watershed. Pierce County Lead Entity, Tacoma, WA. 52 pages.

Puget Sound Indian Tribes and Washington Department of Fish and Wildlife (PSIT and WDFW). 2001. Puget Sound Comprehensive Chinook Management Plan: Harvest Management Component. Northwest Indian Fisheries Commission, Olympia, WA. 129 pages.

Puget Sound Indian Tribes and Washington Dept. Fish and Wildlife (PSIT and WDFW). 2003. Puget Sound Comprehensive Chinook Management Plan: Harvest Management Component. Northwest Indian Fisheries Commission, Olympia, WA. 239 pages.

Puget Sound Indian Tribes and Washington Department of Fish \& Wildlife (PSIT and WDFW). 2004. Comprehensive Management Plan for Puget Sound Chinook: Harvest Management Component. Northwest Indian Fisheries Commission, Olympia, WA. 247 pages.

Puget Sound Recovery Implementation Technical Team (RITT). 2008. Addressing uncertainty in the identification of salmon independent populations in the Puget Sound Chinook ESU. Draft report, Seattle, WA.

Puget Sound Salmon Management Plan. 1985. United States vs. Washington (1606 F.Supp. 1405)

Puget Sound Technical Recovery Team (PSTRT). 2003. Abundance and productivity data tables summarizing key biological and life history data for the North/Middle Fork Nooksack early Chinook population and the South Fork Nooksack early Chinook population. Excel workbook. Nov. 11, 2003. NOAA Fisheries, Northwest Region, Seattle, WA.

Rawson, K. 2000. Stillaguamish Summer Chinook: Productivity Estimates from Coded-Wire Tag Recoveries and A simple Model for Setting Interim Exploitation Rate Objectives - January 26, 2000. Tulalip Fisheries. Marysville, Washington. 15p.

Rawson, K., C. Kraemer, and E. Volk. Estimating the Abundance and Distribution of Locally Hatchery Produced Chinook Salmon Throughout a Large River System Using Thermal Mass-Marking of Otoliths. North Pacific Anadromous Fish Commission. Technical Report No. 3, 2001, pages 31-34.

Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish populations. Ottawa, Fisheries and Marine Service.

Roni, P. 1992. Life history and spawning habitat in four stocks of large-bodied Chinook salmon. M.S. Thesis, University of Washington, Seattle. WA. 96p.

Ruckelshaus, B., B. Ack, K. Berg, B. Cairns, D. Davidson, B. Kelly, R. Kinley, J. Koenings, P. Kremen, S. Lewis, B. Lohn, J. Manning, C. Mosher, B. Nichols, J. Ryan, R. Sims, M. Shelby, D. Troutt, and T. Williams. 2005. Puget Sound salmon recovery plan. Submitted by the Shared Strategy Development Committee, plan adopted by NMFS Jan. 19, 2007. Available online at: http://www.sharedsalmonstrategy.org/plan/index.htm

Ruckelshaus, M., K. P. Currens, R. Fuerstenberg, W. Graeber, K. Rawson, N. J. Sands, and J. B. Scott. 2006. Independent populations of Chinook salmon in Puget Sound. National Oceanographic and Atmospheric Administration (NOAA) Technical Memorandum NMFSNWFSC 78, 125 pages.

Seiler, D., L. Kishimoto, and S. Neuhauser. 2000. Annual Report: 1999 Skagit River wild 0+ Chinook production evaluation. Washington Department of Fish and Wildlife, Olympia, WA. 75 p .

Shaklee, J. B., and S. F. Young. 2003. Microsatellite DNA analysis and run timing of Chinook salmon in the White River, Puyallup basin. Washington Dept. Fish and Wildlife Tech. Rep. \#FPT 03-5. Washington Dept. Fish and Wildlife, Olympia.

Smith, C. and B. Sele. 1994. Evaluation of Chinook spawning capacity for the Dungeness River. Technical Memorandum to Bruce Crawford (WDFW), from P. Crain (Lower Elwha S'Klallam Tribe), B. Williams (Port Gamble S'Klallam Tribe), and N.Lampsakis (Point No Point Treaty Council).

Snohomish Basin Salmonid Recovery Technical Committee (SBSRTC). 1999. Initial Snohomish basin Chinook salmon conservation/recovery technical work plan.

Topping, P., M. Zimmerman, and L. Kishimoto. 2008. Juvenile Salmonid Production Evaluation Report: Green River and Dungeness River Chinook Monitoring Evaluations in 2007. Washington Department of Fish and Wildlife, Olympia, WA. 97 pages.

Vander Haegen, G.E., Ashbrook, C.E., Yi, K.W. and Dixon, J.F. 2004. Survival of spring Chinook salmon captured and released in a selective commercial fishery using gill nets and tangle nets. Fisheries Research 68:123-133.

Waples, R. 1990. Conservation genetics of Pacific salmon. II. Effective population size and rate of loss of genetic variability. J. Heredity 81: 267-276.

Ward, L., P. Crain, B. Freymond, M. McHenry, D. Morrill, G. Pess, R. Peters, J.A. Shaffer, B. Winter, and B. Wunderlich. 2008. Elwha River Fish Restoration Plan-Developed pursuant to the Elwha River Ecosystem and Fisheries Restoration Act, Public Law 102-495. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-90, 168 p.

Warheit, K. I. and C.M. Bettles, 2005. Genetic Characterization of Chinook Salmon (Ocorhynchus tshawytscha) Populations within Watershed Resource Inventory Area 8 (WRIA 8), Washington State. Draft Report. Washington Department of Fish and Wildlife, Olympia. 31 p .

Washington Department of Fisheries, Washington Department of Wildlife, and Western Washington Treaty Indian Tribes (WDF et al.1993). 1993. 1992 Washington State salmon and steelhead stock inventory (SASSI). Wash. Dep. Fish Wildlife, Olympia 212 p. +5 volumes.

Washington Dept. of Fish and Wildlife, and Western Washington Treaty Indian Tribes. 1994. 1992 Washington State Salmon and Steelhead Stock Inventory: Appendix One Puget Sound Stocks, North Puget Sound Volume. Washington Dept. of Fish and Wildlife, Northwest Indian Fisheries Commission, Olympia, WA.

Washington Department of Fish and Wildlife, Puyallup Indian Tribe, Muckleshoot Indian Tribe (WDFW et al). 1996. Recovery Plan for White River Spring Chinook Salmon. Washington Department of Fish and Wildlife. Olympia, Washington.

Washington Department of Fish and Wildlife. 2002. Salmonid Stock Inventory (SASI). Washington Department of Fish and Wildlife, Olympia, WA. Available online at: http://wdfw.wa.gov/fish/sasi/index.htm

Washington Department of Fish and Wildlife and Puget Sound Treaty Tribes (WDFW and PSTT). 2003. Resource Management Plan, Puget Sound Chinook Salmon Hatcheries, a component of the Comprehensive Chinook Salmon Management Plan. WDFW, Olympia, WA.

Washington Department of Fish and Wildlife and Puget Sound Indian Tribes (WDFW and PSIT). 2008. Annual Report Covering the 2007-2008 Fishing Season. WDFW, Olympia, WA.

Washington Department of Fish and Wildlife and Puget Sound Indian Tribes (WDFW and PSIT). 2009. Annual Report Covering the 2008-2009 Fishing Season. WDFW, Olympia, WA.

Water Resource Inventory Area 1 Salmon Recovery Board (WRIA 1 SRB). 2005. WRIA 1 Salmonid Recovery Plan. Whatcom County Public Works, Bellingham, WA. 287 pages + appendices.

Williams, R. W., R. M. Laramie, and J. J. Ames. 1975. A catalog of Washington streams and salmon utilization, Vol. 1, Puget Sound region. Wash. Dep. Fish., Olympia, WA. 926 p.

Appendix A: Management Unit Status Profiles

Nooksack River Management Unit Status Profile

Component Populations

North/Middle Fork Nooksack early Chinook
South Fork Nooksack early Chinook

Geographic description

The Nooksack River natural Chinook management unit is comprised of two early-returning, native Chinook populations that are genetically distinct, geographically separated, and exhibit slightly different migration and spawning timing from one another. They have been combined into a management unit because of their similar migration timing through the fishing areas in the Nooksack River, below the confluence with the South Fork, and Bellingham and Samish Bays.

The North and Middle Forks drain high altitude, glacier-fed streams. Early-timed Chinook spawn in the North Fork and Middle Fork from the confluence of the South Fork (RM 36.6) up to Nooksack Falls at RM 65, and in the Middle Fork downstream of the diversion dam, located at RM 7.2. Spawning also occurs in numerous tributaries including Deadhorse, Boyd, Glacier, Thompson, Cornell, Canyon, Boulder, Maple, Kendall, McDonald, Racehorse, and Canyon Lake creeks. The Middle Fork is a tributary to the North Fork. Spawning is currently concentrated in the North Fork, from RM 44 to RM 64, but may not represent the historical spawning distribution. The current distribution may be influenced by station and off-station release locations for Kendall hatchery origin North/Middle Fork Chinook.

The South Fork drains a lower-elevation watershed that is fed primarily by snowmelt and rainfall, but not by glaciers. Consequently, river discharge is relatively lower and water temperature relatively higher in the South Fork mainstem than the North and Middle forks during mid to late summer and early fall. Early Chinook spawn in the South Fork from the confluence with the North Fork to the cascades at RM 30.8, and in Hutchinson, Skookum, Deer and Plumbago creeks. A partial passage barrier exists at Sylvesters Canyon at RM 25, and Chinook are not always recorded upstream of this barrier. In the South Fork spawning is currently concentrated between RM 8.5 and RM 25. Hutchinson Creek has had the majority of the tributary spawning in recent years, although discharge does not always permit use.

For both populations, the amount of tributary spawning varies considerably from year to year depending on whether discharge is sufficient to allow entry to the spawning grounds.

Life History Traits

Nooksack early Chinook are characterized by early entry into freshwater, a slow upstream migration, and lengthy holding period in the river prior to spawning (Barclay 1980, Barclay 1981). Early Chinook enter the lower Nooksack River from March through July, and on average migrate upstream over a 30 - 40 day period to holding areas. In the North / Middle Fork spawning occur from mid-July through late September, peaking in the third week of August. South Fork spawning begins in August, and peak spawning occurs later than in the North/ Middle Fork, in mid- to lateSeptember.

Earlier analysis of scales collected from North Fork spawners showed that a large majority (91\%) emigrated from freshwater at age- 0 . In contrast, a larger and highly variable (as much as 69 percent) proportion of South Fork spawners emigrated as yearling smolts. (WDFW 1995 cited in Myers et al. 1998). A more thorough, fairly recent review by NMFS of the adult scale data collected from natural-origin spawners, for those years when at least 40 samples were analyzed, determined that 29% and 38% of North/Middle and South Fork early Chinook, respectively, migrated from the river as yearlings (PSTRT 2003). The number of naturally-produced fingerling and yearling smolts emigrating from the Nooksack system has not been quantified, because estimates are confounded by the complexity of contributing stocks.

Available information on the age composition of adults returning to the North/Middle forks and the South Fork (Table 1) indicates a predominance of age-4 returns. The North/Middle Fork age data were derived from natural origin adults sampled on the spawning grounds from 1993 through 2002. There is less confidence in estimates of South Fork population age structure, due to low sample sizes, caused by difficulties in recovering carcasses on the spawning grounds.

Table 1. Estimates of the age composition of returning adult natural origin early Chinook populations in the North / Middle Fork and South Fork of the Nooksack River.

	Age 2	Age 3	Age 4	Age 5	Age 6
North/Middle Fork NOR	$<1 \%$	19%	59%	22%	$<1 \%$
South Fork NOR	0%	12%	72%	16%	0%

Hatchery Recovery Programs

A recovery program for the North/Middle Fork population has operated at the Kendall Creek Hatchery since 1981. At peak production, up to 2.3 million fingerlings, 142,500 unfed fry and 348,000 yearlings were released annually into the North Fork, or at various acclimation sites. The yearling release program was discontinued after the 1996 brood because returns showed that survival rates were lower than those of sub-yearling releases. In 2001, fingerling releases into the Middle Fork were started. Beginning in 1991 all release strategies in the North/Middle Fork supplementation program were made identifiable by unique otolith marks to enable assessment of survival.

The production strategy for the North/Middle Fork program has changed to avoid exceeding rearing habitat capacity, and to reduce straying into the South Fork. On-station releases, which exhibited the highest stray rate, were reduced from 900,000 in 1998, ranging from 630,000 to 424,000 in 1999 2002, and were further reduced to 150,000 in 2003 (which remains the current production objective). The total off-station release was reduced in 2003 from a peak of approximately $1,730,000$ fingerlings in 1999 (all to the North Fork or its tributaries) to 400,000 fingerlings in the North Fork (which constitute the double index tag program for this indicator stock), 200,000 in the Middle Fork, and 50,000 fry to remote site incubators in the North Fork. The remote site incubator releases were discontinued after the 2004 release. The current total Kendall program release objective remains 750,000 sub-yearlings.

The North/Middle Fork Recovery program utilizes several release strategies from the Kendall Creek Hatchery. Otolith analysis enabled estimation of the contributions to the South Fork returns. While stray rates were low, they comprise a significant proportion of natural spawners in the South Fork. Beginning with the 2005 release, all Kendall origin Chinook have been adipose fin clipped except for 200,000 of the double index tag indicator stock release into the upper North Fork, to allow more accurate estimates of contributions to terminal area fisheries and spawning ground escapement.

A recovery program for the South Fork population operated at the Lummi Nation's Skookum Creek Hatchery in brood years 1980-1993. The program was never large, and was discontinued because the returns to the hatchery ladder were low, and because capturing wild broodstock was not successful and considered inappropriate at such low abundance. After the last returns from that program spawned, production of South Fork spring Chinook has been entirely wild.

A captive brood recovery program based at the Skookum Creek Hatchery in the South Fork was begun with the 2006 brood. The need for this program was reemphasized after microsatellite DNA analysis of recovered carcasses, using strengthened DNA baselines, allowed more accurate identification of natural-origin spawners. A fairly recent analysis of samples collected from the South Fork from 1999 to 2006 demonstrated that natural spawning involved the native South Fork stock, natural- and hatchery-origin strays from the North / Middle Fork population, and non-native fall Chinook. The South Fork Chinook population represented a much smaller proportion of the total early escapement to the South Fork than previously estimated.

Initial attempts to collect South Fork Chinook adults for broodstock were largely unsuccessful, so the emphasis shifted in 2007 to collection of juveniles for captive rearing. DNA analysis is used to identify native South Fork- origin juveniles, which comprise the founding broodstock for the recovery program.

A small number of brood year 2006 juveniles and several hundred brood-year 2007 and 2008 juveniles are now being reared. Juvenile collection will continue through 2012, or until there is good representation from of an entire brood cycle. The original intent was to collect 25 pairs of adult broodstock. An assessment of parentage for brood year 2007 and 2008 juveniles indicates that appreciably more than 50 parents were represented each year, and confirms the program incorporates high genetic diversity.

Captive South Fork Chinook are being reared to adulthood in freshwater at Kendall Creek Hatchery and in salt water at the NMFS Manchester Research Station in Port Orchard. As these fish mature, they will be transferred back to Skookum Hatchery for spawning. Their offspring will be reared to sub-yearling stage at Skookum Hatchery, and released into the South Fork in late May. The ultimate objective is to release 200,000 fingerling smolts annually. Any additional smolts are likely to be released higher in the watershed, using a strategy similar to that for the North/Middle Fork program, to encourage more returning adults to utilize the existing spawning habitat. The first maturation of adults from the captive brood program will likely occur in 2010, so the initial release will occur in the spring of 2011.

The captive brood program is expected to end after the wild collections from a full brood cycle are reared to adulthood. Hatchery production will then transition to a conventional recovery program at Skookum Creek Hatchery, similar to the North/Middle Fork program. Over the next decade the South Fork recovery program is expected to increase population abundance dramatically, substantially reducing the risk of extinction, and fully utilizing the production potential of spawning and rearing habitat. Funding has been secured, in part through the Pacific Salmon Treaty, to support this program.

Population Status

The current status of both Nooksack early Chinook populations is critical. Chronically low returns of natural-origin Chinook have been apparent since the early 1990s (WDF et al.1993; WDFW 2002; WRIA 1 SRB 2005). Recent escapement estimates are based on expansion of carcass counts in the North Fork, and either expansion of redd counts or carcass counts in the Middle Fork (depending on whether viewing conditions enabled a census of redds to occur), and redd counts in the South Fork (WDFW and PSIT 2009). Natural-origin spawners in the North/Middle Fork are estimated by subtracting the hatchery-origin component, which is derived by expanding CWTs, otolith-marks, and adipose fin clips, which collectively are referred to as marked Chinook. The identity of spawners in the South Fork is estimated by genetic analysis of tissues collected from unmarked Chinook.

The abundance of natural-origin spawners in the North/Middle Fork population has varied between 210 and 334 since 2001 (Table 2). The data suggest a gradually increasing trend (i.e. the 2004-08 geometric mean exceeds the 1999-2003 geometric mean). This may be partially attributable to the Kendall Creek Hatchery recovery program. Recruitment from higher combined hatchery-origin and natural-origin spawning escapement, comprised of a relatively large number of hatchery-origin spawners, has not increased substantially. This strongly suggests current habitat conditions and existing habitat capacity is constraining the population growth rate.

The Kendall Creek Hatchery program is considered essential to recovery of the North/Middle Fork population because it reduces extinction risk and substantially increases natural escapement. The number of hatchery-origin spawners has varied widely since 1995, increasing to exceed 3700 in 2002, then declining to range between 900 and 1100 in the last three years. This accounting excludes surplus returns to the hatchery in 2000 - 2005, that were released back into Kendall Creek. Hatchery-origin adults have comprised a large majority of natural spawners, but their contribution
has declined to about 75% in the last three years. This is likely due to the reduction in releases from the recovery program and to the slowly increasing natural origin abundances.

Table 2. Natural Chinook spawning escapement - North / Middle Fork Nooksack River.

Return Year	Natural Origin	Hatchery Origin	Total Escapement
1995	171	59	230
1996	209	326	535
1997	74	543	617
1998	37	333	370
1999	85	738	823
2000	160	1082	1242
2001	264	1921	2185
2002	224	3517	3741
2003	210	2647	2857
2004	314	1405	1719
2005	210	1837	2047
2006	275	909	1184
2007	334	1104	1438
2008	307	959	1266

The North/Middle Fork escapements reflect the recent variation in Kendall releases discussed above under Hatchery Recovery Programs. Release numbers increased appreciably in the late 1990's and were adjusted downward beginning in 2003. The peak escapement year was 2002, and the escapements have been stable at a lower level from 2006 through 2008. Returns per natural spawner in the North / Middle Forks have consistently remained below one (Table 3), although a high percentage of the parentage are hatchery origin fish that are spawning naturally. A much lower percentage of spawners are natural-origin Chinook homing back to specific areas that successfully produced smolts. The lack of positive response in numbers of natural-origin Chinook produced by the large parent year spawners from 2000 through 2005 strongly suggest habitat capacity limitations, and that harvest in the southern U.S. is not impeding the rebuilding of the abundance of natural origin spawners. There is insufficient information on the South Fork population to quantify current productivity.

Estimates of the early chinook escapement in the South Fork (Table 4) have traditionally been based on the number of redds observed prior to the first of October expanded by 2.5 redds per spawner. Since 1999, this estimate has been further refined by separating hatchery-origin strays (North/Middle Fork and summer/fall Chinook) based on CWTs, otolith marks or adipose fin clips, and also by assigning the natural origin spawners to the South Fork, North/Middle Fork and summer/fall hatchery stocks. The latter step is based on the expansion of the microsatellite DNA stock assignment of carcasses collected through the first week of October to apply to the total estimated natural origin spawners.

Table 3. Natural origin return per natural spawner rates for early Chinook in the North/Middle Fork of the Nooksack River (Co-Manager unpublished data).

Brood year	Natural spawners	Total age 2-6 Returns	Return per Spawner
1992	493	184	0.37
1993	445	77	0.17
1994	45	25	0.55
1995	230	18	0.08
1996	535	248	0.46
1997	617	344	0.56
1998	370	120	0.32
1999	823	196	0.24
2000	1242	419	0.34
2001	2185	52	0.02
2002	3741	423	.11
2003	2857	147	.05

No clear trend is evident in the native South Fork abundance from 1999 to 2008, although abundances are very low (Table 4). The recent stock composition analysis indicates that non-native fish are large majority of total natural spawners in the South Fork. Estimates of native South Fork abundance have appreciable uncertainty, and for a number of reasons may be biased low. There have been no adjustments in the estimates to account for years when flow conditions do not allow complete surveys, or for when suspended sediment reduces visibility and impedes identification of redds. Additionally, a low percentage of carcasses are sampled, particularly in the upper watershed where the proportion of South Fork native spawners is higher. Genetic analysis of juveniles collected for broodstock indicates significantly higher parental abundance than indicated by the conventional escapement estimates for 2007 and 2008 (WDFW unpublished data).

Smolt releases from the South Fork recovery program are expected to begin in 2011, and increase rapidly over the next several years. Annual releases may reach several hundred thousand Chinook sub-yearlings over the duration of this Plan. Consequently, adult return abundance is anticipated to increase appreciably over the next decade.

Early chinook spawning escapement in the North/Middle forks is estimated from expanded carcass recoveries in the North Fork and tributaries. Each recovered carcass is expanded by 3.48. This relationship has been established between the carcass recoveries and total adults assuming 2.5 adults per redd during years when total redd counts were conducted when clear water allowed. In some years the Middle Fork portion was estimated by counting total redds and expanding by 2.5 adults per redd. This is done during years when survey conditions are good for enumerating redds.

Table 4. Estimated stock composition of naturally spawning Chinook in the South Fork Nooksack River.

	South Fk Native	North Fk NOR	Fall NOR	Kendall Cr Hatchery	Other Hatchery	Total Natural
1999	32	0	127	90	39	288
2000	111	42	132	74	15	373
2001	159	51	65	138	8	420
2002	135	55	98	289	47	625
2003	69	0	150	210	162	570
2004	29	29	88	14	12	170
2005	19	56	56	32	70	230
2006	61	104	192	84	90	515
2007	26	44	128	112	35	323
2008	80	106	126	109	23	443

Habitat Status

The Ecosystem Diagnosis and Treatment (EDT) methodology has been applied to estimate the productivity and abundance of the Nooksack early populations, under current, historical, and recovered (i.e. 'properly functioning' as identified by the NMFS in the FEMAT process) conditions habitat conditions.

The Beverton-Holt recruitment function developed by EDT for the North/Middle forks under current conditions estimated habitat capacity at 2,059 adults and productivity of 1.6 adult recruits per spawner, without consideration of fisheries mortality. The EDT models suggests early Chinook populations are severely limited under current conditions, and that productivity under recovered habitat conditions would be much greater (Figure 1).

A similar analysis of the current productivity in the South Fork (Figure 2) indicates adult capacity of 885 and a return of 1.1 recruits per spawner. Though data is not sufficient to estimate productivity under current conditions, the low level of returning adults of the South Fork population suggests that current productivity is significantly less than indicated by the EDT analysis. The status of the South Fork stock is more difficult to determine given uncertainty in recent spawner abundance and recruitment.

Figure 1. Spawner-recruit relationships under current, recovered, and historical habitat conditions in the North / Middle Fork of the Nooksack River, as estimated by EDT analysis.

Figure 2. The spawner-recruit functions for South Fork Nooksack early Chinook under current, recovered, and historic habitat conditions, as estimated by EDT analysis.

Current habitat conditions are degraded for both populations, but the principal limiting factors differ between the two. Without glacial influence, the South Fork has lower discharge and higher temperatures than either the North or Middle forks, and temperature impairments are acute in the South Fork. In 2007, water temperature in an upper- river spawning area (RM 20.7) exceeded water quality standards during 92 days, or 94% of the days monitored (Coe and Cline 2009). Adult pre-
spawn mortalities occasionally occur in the South Fork. Temperature, habitat diversity (reach habitat complexity and woody cover), and key habitat quality (including deep pools with cover and pool tailouts) are considered the most critical habitat deficiencies constraining abundance and productivity, and the sediment load of coarse and fine sediment are also important factors (WRIA 1 SRB 2005).

While the North and Middle Forks are glacially influenced, some tributaries also have temperature deficiencies that are limiting productivity (WRIA 1 SRB 2005). Channel instability is the most significant limiting factor. Channel migration and turnover in the North Fork are rapid, with some channels shifting multiple times each year, and only a few offering stable habitat for spawning, rearing, or flood refuge (Hyatt and Rabang 2003). The Nooksack Chinook Spawning and Incubation Assessment (Hyatt and Rabang 2003) found that redd failure rates in mainstems were nearly twice as high as in protected off-channel habitats, suggesting the loss of stable side channels is limiting North/Middle Chinook incubation and rearing survival. Existing data indicate that peak discharge (measured at the USGS North Fork gauge) is negatively correlated with spawner recruitment rates (Figure 3). Natural origin recruits per brood year natural spawner (i.e. total escapement) are regressed against the peak discharge event during the brood year incubation period. While the relationship for the 1999-2003 brood productivity is weaker than the relationship for the 1995-1998 broods, with fewer points, forty-three percent of the variability of survival to return is explained by the magnitude of the brood year incubation period high flow event. The diversion dam blockage in the Middle Fork is also considered to be limiting population abundance (WRIA 1 SRB 2005).

Figure 3. Natural origin recruits per natural spawner (ie total escapement) by brood year regressed against the peak discharge event during the brood year incubation period.

Harvest distribution

Recoveries of coded-wire tagged North Fork early Chinook indicate that a majority of harvest mortality occurs outside of Washington waters, primarily in British Columbia, with increasing rates along West Coast Vancouver Island, and lesser, but significant harvest in Georgia Strait and other net and recreational fisheries in British Columbia (Table 5).

Table 5. 2001-2006 average distribution of fishery mortality, based on coded-wire tag recoveries of Kendall Creek Hatchery fingerlings (CTC 2008).

	Alaska	B.C.	US troll	PS net	US sport
$2001-2006$	9.26%	80.35%	2.85%	2.22%	5.32%

Coded-wire tag recoveries indicate that in Washington waters, Nooksack early Chinook have been caught in the Strait of Juan de Fuca troll fishery, recreational fisheries in southern and northern Puget Sound, and net fisheries (primarily in Areas 7 and 7A, Bellingham Bay, and the Nooksack River) in northern Puget Sound.

Exploitation rate trends

Total exploitation rates for Nooksack early Chinook, estimated by post-season FRAM runs, appear stable since 2001 (Table 6). Exploitation rates associated with SUS fisheries have also been consistently low. CWT recoveries, summarized above, suggest that mortality in B.C. fisheries has increased in recent years (CTC 2008).

Table 6. Estimates of total exploitation rates for Nooksack early Chinook by calendar year (post-season FRAM validation estimates).

Year	Total	North	PTSUS	Terminal
2001	22%	17%	2%	2%
2002	19%	17%	2%	0%
2003	19%	16%	2%	2%
2004	20%	16%	2%	2%
2005	21%	17%	2%	2%
2006	16%	11%	2%	2%
2007	20%	15%	2%	2%
2008	14%	11%	1%	2%

Management Objectives

The management objective for Nooksack early Chinook is to constrain mortality in SUS fisheries to very low levels under co-manager jurisdiction, while allowing for the exercise of treaty-reserved fishing rights and providing non-treaty fishing opportunity on harvestable salmon. The conservation actions adopted by the Pacific Salmon Commission reduced the total Chinook fishing related mortality in northern U.S. and Canadian fisheries somewhat, although the vast majority of total mortality will continue to occur in northern fisheries. The management objective of this plan is intended to ensure that SUS harvest will not impede recovery of the North / Middle and South Fork populations, and to maintain supplementation production until the habitat capacity is restored to a level that will sustain viable populations.

The upper management threshold for each Nooksack early population is currently set at 2,000 natural-origin spawners. The lower abundance threshold for each population is 1,000 natural-origin spawners. For the foreseeable future the abundance of natural origin spawners of either of the Nooksack early Chinook populations is not expected to exceed the low abundance threshold. Under this circumstance, fisheries that impact the escapement of these populations will be shaped so the critical exploitation rate ceiling of 7% in southern US fisheries is not exceeded, except that once in five years the SUS ER ceiling may increase to 9%. These ceilings are not viewed as targets, but rather as ceilings within which tribal C\&S fisheries, and fisheries on abundant hatchery Chinook and other species will operate.

With nearly 90% of the recent total harvest mortality occurring in Alaskan and Canadian fisheries (Table 5), further reduction of fisheries impacts in Washington waters would not materially influence spawning escapement. Net, troll, and recreational fisheries in Puget Sound are regulated to minimize incidental Chinook mortality while maintaining fishing opportunity on other species such as sockeye and summer/fall Chinook. The net fisheries directed at Fraser River sockeye, in catch areas 7 and 7A in late July and August, have resulted in very low impact on Nooksack early Chinook.

Conservation measures aimed at reducing spring Chinook harvest in the Strait of Juan de Fuca, northern Puget Sound and the Nooksack River have been in place since the late 1980's. There have been no directed commercial fisheries on Nooksack spring Chinook in Bellingham Bay and the Nooksack River since the late 1970's. Incidental harvest in fisheries directed at fall Chinook in Bellingham Bay and the lower Nooksack River was reduced in the late 1980's by severely reducing July fisheries. Since 1997, there have been very limited ceremonial and subsistence fisheries in the lower river in May and early July. Beginning in 2008, the July fishery was discontinued entirely, and a portion of the ceremonial and subsistence fishery was shifted to the lower North Fork as additional conservation measures to further limit the potential harvest of the South Fork early Chinook population. Commercial fisheries in Bellingham Bay that target fall Chinook have been delayed until August for tribal fishers, and mid-August for non-treaty fishers. Beginning in 1997, the release of summer/fall Chinook from the Kendall hatchery was moved down to the tidal portion of the river and then to the Maritime Heritage Center on the eastern shore of Bellingham Bay, and then eliminated entirely. The lower river release of summer/fall Chinook was shifted into Bertrand Creek in 2007 to reduce straying to early Chinook spawning areas. In 2008 the Bertrand release was
acclimated prior to release. All Nooksack Samish terminal area hatchery releases of fall Chinook are adipose clipped and have a characteristic otolith mark to allow evaluation of release strategies on straying that might affect the genetic integrity of early chinook populations.

The ceremonial and subsistence harvest of Nooksack early Chinook in the Nooksack River is the highest priority in the tribal minimum fishing regime. This fishery will be limited to no more than 30 natural-origin spawners, and co-migrating cultured stock in excess of hatchery escapement requirements, as determined during preseason modeling. The ceremonial and subsistence fisheries will be constrained to the period between mid-March and mid-June, and to areas in the lower river and the upriver area of the North Fork between the railroad tressel (just down-river of the Highway 9 Bridge) and the confluence with Racehorse Creek. The pattern of the fisheries is designed to avoid impact on the South Fork population. Otoliths and tissue samples will be collected from unmarked Chinook caught in this fishery and DNA analysiswill be used to accurately assess fishery impacts. The projected total harvest of early Chinook by in-river tribal fisheries will be determined during preseason planning, with reference to forecasted abundance of natural-origin and hatchery returns.

Fisheries in Bellingham Bay and the Nooksack River directed at fall Chinook will not open prior to August 1. Subsequent fishing in the Nooksack River occurs in progressively more upstream zones to enable early Chinook stocks to clear these areas. Thus the area from Nugent's Corner Bridge (RM 30.9) to a marker approximately 1.8 miles downstream from the South Fork confluence opens the fourth week. The area extending 1.8 miles downstream of the confluence of the North and South Forks will also not open during the early portion of the coho management period, remaining closed prior to statistical week 39 .

An ambitious and long-term effort to restore and protect ecosystem functions required to sustain properly functioning chinook habitat, working in concert with appropriate hatchery production and harvest management regimes, is essential to recovery.

Data gaps

Many of the Data gaps outlined in the initial RMP remain because of the limited availability of resources. Following are the highest priority needs for technical information necessary to understand stock productivity and refine harvest management objectives:

1) Improve estimates of population specific total escapement to the Nooksack basin, with emphasis on both North/Middle and South Fork populations, including estimates of natural-origin fish, and age composition for these fish.
a) Secure resources to read backlog of otoliths collected at the Kendall Creek hatchery to provide a complete evaluation of the contribution of the different release strategies.
b) The microsatellite DNA stock baselines have been improved, which has enabled composition of spawning populations in the South Fork to be improved. With adequate funding, these improved baselines should be used to:
i) Determination of the stock composition of the natural origin "early Chinook" in the South Fork.
ii) The relative success of Chinook in the South Fork for each of the different spawning stocks as indicated by seined juveniles for potential use in the captive brood program.
c) Develop alternative spawning ground population estimates that will allow:
i) Evaluation of pre-spawning migration behavior through radio tags or DIDSON technology.
ii) Improve estimates of the NOR age structure and stock composition (through increased recovery of carcasses on the spawning grounds).
2) Better determine South Fork population river entry and migration timing after substantial returns begin from releases generated by the population rebuilding program.
3) Evaluate the success of the South Fork Chinook captive brood population rebuilding program.
4) Evaluation of acclimation and de-stressing release strategies in the North Fork Recovery Program.
5) Estimate the efficiency of the mainstem smolt trap in a manner that allows comparisons between season-long and summed daily abundance estimates.

Skagit River Management Unit Status Profiles

Component Populations

Summer/fall Chinook management unit
Lower Sauk River (summer)
Upper Skagit River mainstem and tributaries (summer)
Lower Skagit River mainstem and tributaries (fall)

Spring Chinook management unit
Upper Sauk River
Suiattle River
Upper Cascade River

Geographic Description

There are two wild Chinook management units originating in the Skagit River system—summer/fall and spring Chinook. The co-managers (WDFW and WWIT 1994) identified three summer/fall and three spring timed populations. The Puget Sound Technical Review Team concurred with this delineation in their assessment historical population structure (Ruckelshaus et al. 2006).

Summer/fall Management Unit

The three populations tentatively identified within the summer/fall management unit are: Upper Skagit summers, Lower Sauk summers, and Lower Skagit falls. Upper Skagit summer Chinook spawn in the mainstem and certain tributaries, from above the confluence of the Sauk River to Newhalem. Spawning also occurs in the lower five miles of the Cascade River, and in Diobsud, Bacon, Falls, Goodell, and Illabot, creeks. Gorge Dam, a hydroelectric facility operated by Seattle City Light, prevents access above river mile (RM) 94, but historical spawning in the high-gradient channel above this point is believed to have been very limited. The lower Sauk summer stock spawns primarily from the mouth of the Sauk to RM 27-separate from the upper Sauk spring spawning areas above RM 31. The lower mainstem fall stock spawns downstream of the mouth of the Sauk River and in the larger tributaries including Hansen, Alder, Grandy, Jackman, Jones, Nookachamps, O’Toole, Day, and Finney creeks.

Skagit summer/fall stocks are not currently supplemented to a significant extent by hatchery production. A Pacific Salmon Commission (PSC) indicator stock program collects summer broodstock (about 40 spawning pairs per year) from the upper river. Eggs and juveniles are reared at
the Marblemount Hatchery. The objective of the program is to release 200,000 coded-wire tagged fingerlings for monitoring catch distribution and harvest exploitation rate. Summer Chinook fingerlings are acclimated in the County Line Ponds before they are released. Development of a lower river fall indicator stock program was initiated in 1999, with similar production objectives, and with releases occurring at the Baker River adult trapping facility. Production programs for fisheries enhancement of Skagit summer/fall Chinook, and plants of fall Chinook fingerlings into the Skagit system from the Samish Hatchery have been discontinued.

Spring Management Unit

The Skagit spring management unit includes stocks originating in the upper Sauk, the Suiattle, and upper Cascade rivers. The upper Sauk stock spawns in the mainstem to the forks, in the lower North Fork to the falls, and the South Fork to river mile 3.5., Included in this population are fish spawning in the Whitechuck River, and tributaries Camp, Pugh and Owl Creeks. The Suiattle stock spawns in several tributaries including Buck, Downey, Sulphur, Tenas, Lime, Circle, Straight, Milk and Big creeks. The Cascade spring stock spawn in the mainstem above RM 8.1, to the forks, in the lower North and South Forks, and in tributaries Marble, Found and Kindy Creeks. They are thus spatially separated from the Upper Skagit summer Chinook which use the lower 5 miles of the Cascade River. Spring Chinook originating from Suiattle River broodstock are released from Marblemount Hatchery. Annual releases averaged 112,000 yearlings for the period 1982-1991 (WDF et al. 1993). Since then, about 250,000 subyearlings have also been released each year. All spring Chinook releases are coded-wire tagged.

Life History Traits

The upper Skagit summer and lower Sauk River summer stocks spawn from early September through October. Operational constraints imposed by the Federal Energy Regulatory Commission on the Skagit Hydroelectric Project's operation have, to some extent, mitigated the effects of flow fluctuations on spawning and rearing in the upper mainstem, and reduced the impacts of high flood flows by storing runoff from the upper basin. The lower river fall stock enters the river and spawns later than the summer stocks; spawning peaks in mid October. Age of spawning is primarily 4 years, with significant Age-3 and Age-5 fish. Most summer/fall Chinook smolts emigrate from the river as subyearlings, though considerable variability has been observed in the timing of downstream migration and residence in the estuary, prior to entry into marine waters (Hayman et al. 1996).

Spring Chinook begin entering freshwater in April and spawn from late July through late September. Adult spring Chinook returning to the Suiattle River are predominantly age-4 and age-5 (WDF et al. 1993 and WDFW 1995 cited in Myers et al. 1998). Glacial turbidity from the Suiattle River and Whitechuck River limit egg survival in the lower Sauk River. Analysis of scales collected from adults on the spawning grounds indicates that the proportion of spawners that outmigrated as yearlings ranged from 20% to 85% in the Suiattle, 35% to 45% in the Upper Sauk, and 10% to 90% in the Upper Cascade system.

Status

Natural escapement for all three Skagit summer/fall Chinook populations has shown an increasing trend over the last 17 years (Table 1), and has greatly exceeded the low abundance threshold of 4,800 in every year since 1999. The geometric mean of the last five years' summer/fall escapement (20042008) was 16,865 , an increase from previous 5 -year geometric means of 7,804 (1994-1998) and 11,711 (1999-2003). Recent assessment of freshwater productivity for summer/fall Chinook suggests that long-term harvest would be maximized by using a preseason target of 14,500 as the Upper Management Threshold (see Table 3 below). Note that, due to variability and biases in management error, this Upper Management Threshold is higher than the calculated MSY escapement level (see Appendix XX).

Table 1. Spawning escapement of Skagit River Chinook, 1992-2008.

Year	Suiattle spring	Upper Sauk spring	Cascade spring	Total spring	Lower Sauk summer	Upper Skagit summer	Lower Skagit fall	Total summer/ fall
1992	201	580	205	986	469	5,548	1,331	7,348
1993	291	323	168	782	205	4,654	942	5,801
1994	167	130	173	470	112	4,565	884	5,561
1995	440	190	225	855	278	5,948	666	6,892
1996	435	408	208	1,051	1,103	7,989	1,521	10,613
1997	428	305	308	1,041	295	4,168	409	4,872
1998	473	290	323	1,086	460	11,761	2,388	14,609
1999	208	180	83	471	295	3,586	1,043	4,924
2000	360	388	273	1,021	576	13,092	3,262	16,930
2001	688	543	625	1,856	1,103	10,084	2,606	13,793
2002	265	460	340	1,065	910	13,815	4,866	19,591
2003	353	193	298	844	1,493	7,123	1,161	9,777
2004	495	700	380	1,575	443	20,040	3,070	23,553
2005	518	308	420	1,246	875	16,608	3,320	20,803
2006	375	1,043	478	1,896	1,095	16,215	3,508	20,818
2007	108	282	223	613	383	9,855	1,053	11,291
2008	203	983	284	1582	538	8,441	2,685	11,845

Spawning escapement for the spring Chinook unit has been consistently below 2,000, but has, been above the low abundance threshold of 576 every year since 1999. The geometric mean of escapement in 2004-2008 was 1,293, an increase from previous 5-year geometric means of 963 (1994-1998) and 957 (1999-2003).

Harvest Distribution

Coded-wire tag recovery data for PSC indicator stocks provide a description of the harvest distribution of Skagit Chinook, and contrast the differences between summer/fall and spring timed stocks. Yearling and fingerling releases from Marblemount Hatchery describe the distribution of spring Chinook. In the past, Samish hatchery fall fingerling releases were considered to be an accurate surrogate for the distribution of Skagit summer/fall Chinook. Local summer and fall indicator stocks are being developed for the Skagit using tagged releases of offspring from indigenous broodstock at the Marblemount Hatchery. Several years of data are now available for the summer indicator stock. For the period 2000-2006, approximately 87% of the mortality of summer Chinook has occurred in fisheries in British Columbia and Alaska (i.e. outside the jurisdiction of the Washington co-managers). Washington troll, net, and sport fisheries combined accounted for 13\% of total summer Chinook fishing mortality (Table 2). The harvest distribution of yearling and fingerling spring Chinook differ, with about 59 and 76% of mortality occurring in northern fisheries, respectively. Puget Sound net fisheries account for 2% of fishery mortalities. Washington recreational fisheries account for 37% of yearling mortality, and 20% of fingerling mortality.

Table 2. Average distribution of fishery mortality for Skagit River Chinook for 2000-2006, expressed as percent fishery mortality (CTC 2008).

	Alaska \%	Canada \%	US Troll \%	US net $\%$	US sport $\%$
Spring yearling	1.1%	58.3%	1.4%	2.7%	36.5%
Spring fingerling	6.2%	69.4%	2.0%	2.3%	20.2%
Summer fingerling	27.4%	59.9%	0.9%	5.3%	6.4%

Exploitation Rate Trend:

Annual (management year) exploitation rates for Skagit summer/falls, as estimated by post-season FRAM runs, have fallen drastically, from levels averaging nearly 70% 1983-1987, to an average of 45% from 2000-2008. Over the same period, exploitation rates for spring Chinook have decreased an even large amount, from similar historical levels to an average of 25% since 2000 (Figure 1).

According to the most recent FRAM validation runs, total exploitation rates for Skagit spring and summer/fall Chinook were below unit ERC's (38% and 50% respectively) every year under the previous plan.

Figure 1. Total AEQ fisheries exploitation rate of Skagit summer/fall and spring Chinook, estimated from post-season FRAM runs for management years 1983-2008.

Management Objectives

Harvest management objectives in effect under the 2004 plan appear to have been successful, as positive trends in escapement have occurred for spring and summer units. In addition, recent analyses of the ERCs, which used recruitments generated from FRAM validation runs, indicated that the ERCs used in the 2004-2009 plan continue to satisfy jeopardy standards under the latest FRAM calibration (see following section, Calculating Rebuilding Exploitation Rates (RERs) for Skagit Chinook Using FRAM Validation Run Recruitments). Thus, the objectives from the previous plan, summarized in the table below (Table 3), will remain in effect for the duration of this plan. Details on the original derivation of these objectives are available in the Skagit management unit profile from the previous plan.

Table 3. Harvest management objectives for Skagit River Chinook.
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Management Unit } & & & \begin{array}{c}\text { ERC }\end{array} & \begin{array}{c}\text { Upper } \\ \text { Management } \\ \text { Threshold }\end{array}\end{array} \begin{array}{c}\text { CERC }\end{array} \begin{array}{c}\text { Low } \\ \text { Abundance } \\ \text { Threshold }\end{array}\right]$.

Data Gaps

Priorities for filling data gaps to improve understanding of stock/ recruit functions or population dynamics simulations necessary to testing and refining harvest management objectives include:

- Consistent release of coded-wire tagged fingerling summer and fall Chinook to enable direct assessment of harvest distribution, and estimation of harvest exploitation rates and marine survival rates.
- Update summer/fall Chinook productivity estimates once there are CWT indicator data available from a sufficient number of broods.
- Estimates of natural-origin smolt abundance from spring Chinook production areas.
- Estimates of estuarine and early-marine survival for fingerling and yearling smolts.
- Limiting factors on yearling Chinook abundance.

Calculating Rebuilding Exploitation Rates (RERs) for Skagit Chinook Using FRAM Validation Run Recruitments

I. INTRODUCTION

The exploitation rate ceilings (Rebuilding Exploitation Rates, or RERs) used to manage Skagit spring and summer/fall Chinook were initially calculated by deriving spawner-recruit parameters for each management unit, simulating recruitment, harvest, and escapement under variable conditions over a period of years, and varying the target exploitation rate until arriving at a target rate (the RER) that was included in the 2004 Puget Sound Chinook Harvest Plan that was accepted by NMFS as consistent with the requirements of the Endangered Species Act (ESA)(Hayman 1999; Hayman 2000; NMFS 2005; PSIT and WDFW 2004). Then, in any given year, in order to evaluate whether a particular fishing regime satisfied these RER ceilings, managers used the Chinook Fisheries Regulation Analysis Model (FRAM) to estimate projected impacts. FRAM originally expressed its exploitation rates as an index relative to a base period, but, to reduce confusion, these indexes were subsequently converted to absolute exploitation rates. It is these absolute exploitation rate numbers that are compared to the RERs, to evaluate whether a fishing regime does not exceed the RERs.

However, because of different assumptions about base-year escapement and recruitment of tagged Chinook, the base year exploitation rate numbers calculated in FRAM have not been the same as those that were used to calculate the RERs. In addition, each time FRAM was recalibrated, which was done when new stocks or fisheries (or data) were inserted into the model, the base year exploitation rate numbers changed slightly, which also changed the relation between the RERs and the exploitation rates calculated in FRAM. Thus, when the RERs were first calculated, and again each time FRAM has been recalibrated, it has been necessary to recalculate the RERs in FRAM equivalent absolute numbers. This has sometimes been a controversial task.

In 2002, 2005, and 2007, FRAM was recalibrated, and validation runs were done. Validation runs are post-season runs that are intended to capture the fisheries, recruitments, and escapements that actually occurred each year (preseason FRAM runs represent only the fisheries, recruitments, and escapements that are predicted.). Since these are post-season runs, this means that the recruitments that are modeled are, in FRAM terms, estimates of the recruitments that actually occurred each year. If we could convert these fishing year recruitments to brood year recruitments, then we could do a spawner-recruit analysis in terms of FRAM recruitment numbers to derive spawner-recruit parameters, and use those parameters to recalculate the RERs. Because the spawner and recruit numbers used in these simulations would be derived from FRAM, the RERs that are derived from this analysis would be directly in FRAM terms, and would not need any readjustment.

It is the purpose of this paper to generate the brood year recruitments of Skagit spring and summer/fall Chinook from the 2007 FRAM validation runs ${ }^{1}$, calculate spawner-recruit parameters for each unit, and estimate the RER for each unit in FRAM-derived terms.

II. METHODS

Calculation of Brood Year Recruitments

The 2007 FRAM validation runs covered fishing years 1983-2006, a period of 24 years. Since FRAM models Chinook ages 2 through 5, this meant that recruitments could be calculated for brood years 1981 through 2001, or 21 brood years.

To generate the brood year recruitments, I ran FRAM validation runs for each fishing year, and output two reports from each run: the Population Statistics Report, which lists the FRAM generated escapement ${ }^{2}$ for each age, and the Mortality By Age Report, which lists the Adult Equivalent ${ }^{3}$ (AEQ) total mortality by age, time step ${ }^{4}$ (TS), and fishery. I then summed the age specific AEQ mortality + escapement for each fishing year, to get the AEQ recruitment by age. The sum of the age-specific AEQ recruitments for each cohort was the brood year recruitment for that cohort.

For summer/fall Chinook, FRAM has both a fingerling and yearling stock, so both of those had to be summed for each brood year. Skagit Spring Chinook are represented only by a yearling stock. In order to subtract out the hatchery components of each management unit (the 1983-2002 FRAM runs do not explicitly break out hatchery fish by age), I multiplied the wild percent by age values from Hayman (2008), by the age-specific recruitment of each stock. The methods used to calculate the wild percent by age are described in Hayman (2007).

The resulting wild recruitments could be used for the spawner-recruit analysis, except that there is a problem - the FRAM validation runs were intended to mimic post-season observations as closely as possible, but they did not eliminate all differences. FRAM has a module, the Terminal Area

[^1]Management Module (TAMM), that computes spawning escapements from the terminal harvest rates that were actually used (as opposed to the base period harvest rates, which is what FRAM uses for the Population Statistics Report), so the estimated escapements in TAMM should have been close to what was observed. However, they were not the same, and, for summer/falls, differed by as much as 2400 from the observed escapement. Thus, if we used the recruitments calculated by adding FRAM catch + escapement, and the observed spawning escapements to estimate exploitation rates, we got rates that were different from those estimated by FRAM. This left us with a question: which did we trust more - FRAM's estimates of recruitment, or FRAM's estimates of exploitation rates?

Since Chinook FRAM was originally designed to estimate exploitation rates, and since exploitation rates of hatchery indicator stocks can usually be estimated more accurately than escapements of wild stocks, I tended to side with the exploitation rate estimates. So I calculated an alternate set of recruitments that used the FRAM-generated exploitation rates (actually the complement of the exploitation rates), divided into the observed escapements, to estimate recruitment. To generate these recruitments, I calculated the percent age composition by year of the escapements listed in the Population Statistics Report, for each management unit, and multiplied those percentages by the observed escapement ${ }^{5}$ that fishing year. This gave me the escapement-by age of the observed escapement, assuming FRAM's age composition. For each cohort, I then summed the age-specific escapements that resulted from each brood year (e.g., for the 1981 brood year, I added together the 1983 age 2's, the 1984 age 3 's, the 1985 age 4's, and the 1986 age 5 's) to get the total escapement that resulted from each brood year.

I did a similar exercise to calculate the brood year exploitation rates: first, I took the same percent age composition of the escapements from the Population Statistics Report, and multiplied those percentages, by the TAMM escapement (not the observed escapement) that fishing year. This gave me the escapement-by-age of the TAMM escapement, and for each cohort, I then summed the agespecific escapements that resulted from each brood year, as described in the paragraph above, to get the total TAMM escapement that resulted from each brood year. For each brood year, I divided the TAMM escapement that resulted from that brood year by the brood year recruitment calculated by adding the FRAM catch + escapement, and the complement of that percentage was the brood year exploitation rate, as calculated by FRAM.

So I then had estimates of the observed escapement that resulted from each brood year (two paragraphs above), and brood year exploitation rates (one paragraph above). I divided the observed escapement that resulted from each brood year by the complement of that brood year's exploitation rate, and, voila! - I had an alternate estimate of brood year recruitment, which assumed that the FRAM-generated exploitation rates were accurate.

As it turned out, for summer/falls, the spawner-recruit parameters generated by assuming the

[^2]FRAM recruitments were more accurate were almost the same as the parameters generated by assuming the FRAM exploitation rates were more accurate. So, much ado about nothing. For springs, however, there was more difference.

Estimation of Spawner-Recruit Parameters

Having calculated the spawners and recruits for each brood year, I then estimated the spawnerrecruit parameters for a Ricker curve and for a Beverton-Holt curve. The equation that I used for the Ricker curve is:

$$
\mathrm{R}=\mathrm{S}^{*} \alpha^{*} \operatorname{EXP}\left(-\beta^{*} \mathrm{~S}\right)+\varepsilon
$$

where R is recruitment, S is the number of spawners, α and β are constants, EXP means to raise the base of the natural logarithm function to the power of the following argument, and ε is a random error term with mean of 0 and standard deviation of the prediction standard error at S (i.e., error is distributed symmetrically around the curve). The equation that I used for the Beverton-Holt curve is:

$$
\mathrm{R}=\mathrm{a} * \mathrm{~S} /((\mathrm{a} / \mathrm{b})+\mathrm{S})+\varepsilon
$$

where a is the recruitment when S equals ∞, and b is the slope at the origin.
For each equation, I used Excel's Solver function to derive the parameter estimates that minimized the sum of squares of the residuals from the spawner-recruit curves. To calculate the standard errors of the parameters, I ran a regression of $\ln (\mathrm{R} / \mathrm{S})$ against S , derived the coefficients of variation (C.V.) for each parameter, and multiplied the C.V. by the parameter estimate. That may not be the correct way to do it, but I didn't know how else to calculate the standard errors of separate parameters in a non-linear equation.

As we did in the previous RER analysis (PSIT and WDFW 2004), I made two further adjustments to the spawner-recruit curves, to try to account for depensatory recruitment at low escapement levels. The first adjustment was to establish a point of depensation (hereafter abbreviated "Ecrit"), below which the average recruit/spawner value was 1.0 (i.e., for all escapements less than the point of depensation, recruitment averaged replacement only). This escapement value was calculated as 5% of the carrying capacity estimated from the spawner-recruit curve (Peterman 1977). The second adjustment was that for escapements less than all previously-observed values, but greater than Ecrit, the average recruits/spawner value was equal to the recruits/spawner value at that lowest observed escapement (hereafter abbreviated "ElowObsEsc"). I did this because, not having observed any escapements lower than the lowest observed level, it is unknown whether productivity increases at lower escapement levels, as theorized by both the Ricker and Beverton-Holt curves.This second adjustment also reduced the degree of knife-edge increase in escapement that occurs when escapement is one fish greater than Ecrit.

Calculation of the RERs

The RERs are intended to achieve a viable escapement level a high percentage of the time (see below). The viable escapement threshold is defined as follows:

Viable Escapement Threshold (Eviable): The Puget Sound Chinook Technical Review Team (TRT), under policy direction from NMFS, defined the "viable" level as the initial escapement from which, under current conditions, the probability that the run would go extinct at the end of 100 years is 5% (Ruckelshaus et al. 2002), i.e., the initial escapement for which

$$
\mathrm{P}\left(\mathrm{~N}_{100}<\mathrm{xe}\right)=5 \% .
$$

where P is probability, N_{100} is the number of fish in the escapement after the 100 th year, and Xe is an extinction level (I used 100 fish; 10 fish or 1 fish could also be considered an extinction level). Note that the viable escapement varies with the assumed current exploitation rate.

The RER is defined as the maximum exploitation rate that would achieve the following:

1. The percentage of escapements less than the critical escapement ($E_{\text {crit }}$) increases by less than 5 percentage points relative to the baseline of no fishing. Mathematically:

$$
\left(\% \mathrm{E}<\mathrm{E}_{\text {crit }}\right)<\left(\left[\% \mathrm{E} \text { under baseline }<\mathrm{Ecrit}^{\text {che }}\right]+5 \%\right) ;
$$

where $\% \mathrm{E}$ is the percentage of escapements;
and either:
2a. Escapements at the end of 25 years exceed the viable threshold at least 80% of the time. Mathematically:

$$
\left(\% \mathrm{E}_{25}>\mathrm{Eviable}\right)>80 \%
$$

where $\% \mathrm{E} 25$ is the percentage of escapements after 25 years, and Eviable is the viable escapement level.

Or:
2 b . The percentage of escapements less than the viable threshold at the end of 25 years differs from the baseline by less than 10 percentage points. Mathematically:

$$
\left(\% \mathrm{E}_{25}<\text { Eviable }\right)<([\% \mathrm{E} 25 \text { under baseline }<\text { Eviable }]+10 \%)
$$

I calculated the RERs by using methods described in Hayman (1999), Hayman (2000), and PSIT and WDFW (2004). In summary, I used a program that simulated recruitment, catches, and escapement of Skagit Chinook over a selected period of years. The simulations incorporated uncertainty, management error, and environmental variation. Stock-specific inputs to this model were the
spawner-recruit parameters (with variability values for those parameter estimates), age composition values in the terminal area, and the distribution of management error (i.e., the percent difference between management targets and the harvest rates actually applied). The basic structure of the simulation consisted of starting with a brood escapement, generating a recruitment value, applying a brood year exploitation rate to that recruitment, breaking the resulting brood year escapement out by age, calculating the fishing year escapement, and repeating the process for the next year. I set the initial spawning escapement level, selected a target exploitation rate, and ran the program for a chosen number of years (100 years for Eviable runs, and 25 years for RER runs). At the end of each run, the program generated a new set of underlying spawner-recruit parameters (using the uncertainty in the parameter estimates) and ran the simulation again for the chosen number of years. This process repeated for a user-selected number of runs. After all the runs were completed for a given target exploitation rate, the program output the target exploitation rate, the mean recruitment, the mean catch, the mean escapement number, the number of times escapement fell below the critical escapement, the number of runs that ended with an escapement below the viable escapement, and the number of runs that ended with extinction. This process was then repeated for a different target exploitation rate.

I did make some programming changes from the previous analyses (PSIT and WDFW 2004). The changes were:

- I did not use QuickBasic to run the program - instead, I converted the program into an Excel spreadsheet (CKBUFFER in Excel 608.xls).
- The previous version used a constant percent age composition for the recruitments; in this analysis, the age composition of the recruitment varied between brood years - the program randomly chose a brood year age composition from among the BY 1981 to 2001 age compositions that were calculated from the FRAM validation runs
- Instead of using flow in cfs as the freshwater survival factor, I used a relation between flood recurrence interval and survival (E. Beamer, Skagit River System Cooperative, pers. comm.), and randomly chose a survival index value (mean survival = 1.0) from a list of index values that ran from 1972 to 2006. Because the survival index was relative to the mean, there was no coefficient for this term in the spawner-recruit relation.
- To vary marine survival, I used the same sine function that was used in Hayman (1999); however, at that time, because there was a huge El Nino event in 1996-97, I started the simulations at an offset of $3 \pi / 2$ (the lowest point) on the marine survival cycle. Because it is now about a half-cycle later, I started the simulations in this analysis at an offset of $\pi / 2$ (the highest point) on the marine survival cycle.
- I updated the initial escapements (which started the run) to the escapements observed in 2003-2007.
- To simulate management error, rather than randomly selecting an actual error value observed in the past, I instead calculated the range of management errors observed in the past (by comparing FRAM validation ERs to the preseason forecast ERs), and randomly chose a whole percentage value within that range.
- I limited the allowed percentage deviation from the spawner-recruit curve to a rounded maximum or minimum of the observed percentage deviations.

Effects of Habitat Restoration Actions

I also modeled the effects of habitat restoration actions on the calculated RERs. Since
NOAA has adopted the Puget Sound Salmon Recovery Plan (Ruckelshaus et al. 2005) as the species recovery plan under the ESA for Puget Sound Chinook, it is assumed that NOAA will insure that the actions called for in that plan, including the habitat restoration actions, will be implemented. In the Skagit chapter of that plan (Beamer et al. 2005: pg 285), it was calculated that implementation of all the proposed habitat restoration actions would result in a 23% increase in Skagit Chinook capacity, and a 22% to 65% increase in productivity, depending on the relative level of ocean survival. Since CKBUFFER models the entire range of ocean survival, I used the midpoint, 44%, as the estimate of the increase in productivity that will result from the habitat restoration actions. The actions would be implemented over a $20-\mathrm{yr}$ period, and, while actions to increase capacity would take effect within a year or two after completion of a project, actions to increase productivity would likely require more time to take effect. Thus, in modeling the effects of restoration actions, I assumed no effect for the first 10 years, that capacity increases would take full effect by year 20, and that productivity increases would be fully implemented by year 30 . In order to model these increases, I increased the capacity parameters (the Ricker β - actually, to increase capacity, I decreased this parameter - and the Beverton-Holt a) by an additional 2.3% each year from year 11 to year 20, and I increased the productivity parameters (the Ricker α and the Beverton-Holt b) by an additional 2.2% each year from year 11 to year 30 . Thus, I was also assuming that the increases in capacity and productivity were linear from year 11 until they were fully effective.

III. RESULTS

Spawner-Recruit Parameters

For the RER analysis, I chose to use the recruitment numbers that were generated by using the FRAM exploitation rates. This made little difference for Skagit summer/falls (Table 1), but there was more of a difference for Skagit springs (Table 2). For Skagit summer/falls, the best-fit spawner-recruit parameters for these data were:

	Skagit Summer/Fall Chinook	
	$\underline{\text { Ricker }}$	$\underline{\text { Beverton-Holt }}$
α or a	6.854	35815
β or b	$8.16 \mathrm{E}-05$	14.18
MSY Escapement	8632	6986
Replacement	23575	33288
Std dev of α or a	1.207	12903
Std dev of β or b	$2.94 \mathrm{E}-05$	2.50
Root Mean Square Error	14710	14904
Maximum Deviation Ratio	2.53	2.66
Minimum Deviation Ratio	0.23	0.24

In comparison, if I had used the recruitments calculated by summing the FRAM AEQ mortalities and escapements, the Ricker α would have been 6.888 , and β would have been $8.16 \mathrm{E}-05$ (i.e., the same value).

For Skagit springs, the best-fit spawner-recruit parameters were:

	Skagit Spring Chinook	
$\boldsymbol{\alpha}$ or a	Ricker	Beverton-Holt
β or b	5.843	3182
MSY Escapement	1055	16.65
Replacement	2696	589
Std dev of α or a	1.009	2991
Std dev of β or b	$2.52 \mathrm{E}-04$	1368
Root Mean Square Error	1689	3.47
Maximum Deviation Ratio	2.71	1649
Minimum Deviation Ratio	0.37	2.72
		0.39

In comparison, if I had used the recruitments calculated by summing the FRAM AEQ mortalities and escapements, there would have been more of a difference than was the case for summer/falls for springs, the Ricker α would have been 5.668 , and β would have been $6.91 \mathrm{E}-04$.

For both Skagit summer/falls and springs, there was considerable scatter around the spawner-recruit curves (Fig. 1). Because of this scatter, the standard deviations of the spawner-recruit parameters (particularly the Ricker β and the Beverton-Holt a) were relatively wide, and, in generating the underlying spawner-recruit parameters to be used for each run, could have given really improbable spawner-recruit curves if allowed to vary without constraint. Thus, I limited the allowed variation in the Ricker β and Beverton-Holt a parameters such that the replacement levels could not go outside a range of about 7,500 to 75,000 for summer/fall Chinook, and a range of about 700 to 10,000 for Skagit springs.

Brood Year Age Composition

For the simulations, I combined the FRAM age 2 escapements with the age 3 escapements. While there was considerable variability in age composition between brood years, the age composition of the summer/fall escapements (Table 3) were generally more weighted toward age $2+3$ (and less toward age 5) than the spring Chinook escapements (Table 4).

Point of Depensation (Ecrit)

For Skagit summer/fall Chinook, the Ricker relation gave a carrying capacity (i.e.,replacement) estimate of 23,575 , and the Beverton-Holt carrying capacity was 33,288 . Assuming that the point of depensation is 5% of the carrying capacity (Peterman 1977), the Ecrit I used for the Ricker simulations was 1179; for the Beverton-Holt simulations, Ecrit was 1664.

For Skagit spring Chinook, the Ricker relation gave a carrying capacity estimate of 2696, and the Beverton-Holt carrying capacity was 2991. Thus, Ecrit for the Ricker simulations was 135; for the Beverton-Holt simulations, Ecrit was 150.

Viable Escapement Level (Eviable)

In 1999, when I first calculated summer/fall Chinook viable escapement levels, the simulations showed that an initial escapement level of 4700 met the criteria for a viable threshold (i.e., initial escapement from which there is less than 5% probability ${ }^{6}$ of going extinct in 100 years)(Hayman 1999). This escapement level, 4700, was about midway between the critical escapement (1165 in that calculation), and the MSY escapement (between 8,000 and 10,000). In this year's analysis, however, for reasons I don't have time to figure out, the simulations indicated that the viable threshold criterion was satisfied by any value above the critical escapement. And, unlike in the 1999 analysis, it was a knife-edged breakpoint: for all initial escapements below the critical level, about 99% of the runs ended with extinction; for all escapements above the critical level, almost none did. This indicates that, under the assumptions modeled, Skagit Chinook may be highly robust to extinction risk at surprisingly low escapement levels, but, for purposes of deriving an RER, this was not particularly informative, because it didn't make sense for the critical threshold to be the same as the viable threshold. The escapement level that, in actual biological fact, satisfies the Eviable criteria might indeed be close to Ecrit, but it is highly unlikely that the threshold for oblivion is the same as the threshold for viability. As a result, for the viable threshold in these simulations, I used a much higher value - the calculated MSY escapement. This is not unprecedented - we used the calculated MSY escapement as the viable threshold level in the 2004 plan (PSIT and WDFW 2004) to set the RER for Skagit spring Chinook, and NMFS used the MSY escapement as the viable threshold level for RER calculations it did for other Puget Sound units (NMFS 2005). Note, however, - and let's get all the disclaimers out of the way - just what it is that we are using the MSY escapement for: the calculated MSY escapement is being used in this exercise solely for the purpose of deriving an RER; it is not any kind of a management target or minimum threshold. If our objective was only to maintain a low probability of extinction, the simulations indicate that a considerably lower escapement target would be justified; if our objective was to maximize long-term harvest, prior analyses (PSIT and WDFW 2004, Appendix A, Skagit chapter, Derivation of Upper Management Thresholds) have indicated that, due to variability and biases in the data, the escapement target would have to be considerably higher than the calculated MSY escapement. In this analysis, the calculated MSY escapement is being used solely to determine the ceiling exploitation rate (RER) that provides more than an 80% probability after 25 years of exceeding the escapement level from which there is less than a 5% probability of going extinct after 100 years. Note also that the MSY escapement is a conservative value for this task, because the simulations in this analysis indicated that escapements considerably below the MSY escapement level also satisfy the criterion of less than a 5% probability of extinction after 100 years. So, if a run ends with an escapement slightly below the MSY escapement, it's not the end of the world. For purposes of

[^3]estimating an RER, that run would count as a failure to exceed the chosen threshold, but it does not mean that extinction is inevitable.

Got all that? Good. What this means is that, for Skagit summer/fall Chinook, I used a viable threshold level of 8632 for simulations that used the Ricker equation, and 6986 for simulations that used Beverton-Holt. For Skagit spring Chinook, the Ricker relation yielded an MSY escapement estimate of 1055, and the Beverton-Holt relation gave an MSY escapement of 589. While we have had spring Chinook escapements below 589, and those escapements did produce relatively good recruitments (Table 2), I just could not bring myself to use a number as low as 589 as an MSY level for spring Chinook. Consequently, in the RER simulations for spring Chinook, I used 1055 as the viable threshold escapement level for both the Ricker and the Beverton-Holt simulations. Note that this puts added conservatism in the Beverton-Holt simulations.

RER Calculation

In analyzing the RER simulations (Tables 5-12), the first thing to realize is that I never figured out how to generate a repeating random number sequence in Excel; consequently, there was some slop in the results (e.g., a slightly higher ER might result in a slightly higher modeled mean escapement in one simulation run), and, if I ran the exact same simulation again, I may not get exactly the same results. That said, the results are repeatable to within +1 percentage point, and this random variation did not change the overall conclusions of this analysis. This variation also means that, because the RERs are only repeatable to within +1 percentage point, there is no biological justification for managing for 6-decimal place precision in the RERs.

For all simulations, the calculated RERs were higher than the RERs used for current management (50% for summer/falls; 38% for springs). For the Ricker model runs, there were more critical escapements and runs ending below Eviable at the lower exploitation rates than for the Beverton-Holt model runs at the lower exploitation rates (compare, for example, Table 5 vs. Table 6). This was because the Ricker curve has a descending limb at high abundances; thus, when the freshwater and marine survival factors were both high, and combined to produce very high escapements, the resulting recruitments were very low. This did not occur for the Beverton-Holt simulations, because the Beverton-Holt curve does not decline at high escapements. Nonetheless, there was little difference between the two spawner-recruit models in their estimates of RER - for summer/falls, the estimates of RER varied from 60% to 64% (Tables $5,6,9$, and 10), depending on the model used and the assumptions about variation in the spawner-recruit parameters (see next paragraph); for spring Chinook, the RER estimates ranged from 48% to 55% (Tables 7, 8,11 , and 12).

Because I was unsure whether it is valid to vary the underlying spawner-recruit parameters before each 25 -year run, or whether that double-counts the variability, I also ran the simulations with the underlying spawner-recruit parameters held constant throughout all the runs (Tables 9 through 12). In these simulations, recruitments did vary around the spawner-recruit curve, but the spawner recruit curve itself did not change each run. The RERs calculated from these runs were higher than in the runs where the underlying spawner-recruit parameters varied before each run - the differences ranged from one percentage point for summer/fall Chinook modeled with a Ricker curve (compare

Table 5 vs. Table 9), to six percentage points for spring Chinook modeled with a Beverton-Holt curve (compare Table 8 vs. Table 12).

At the current RERs (50% for summer/falls, and 38% for springs), the probability that the escapement after 25 years would exceed Eviable ranged from 88% to 98% for summer/falls, and from 88% to 95% for springs (Tables 5 through 12).

Effects of Habitat Restoration Actions

When it was assumed that all the habitat restoration actions in the Skagit Chinook Recovery Plan (Beamer et al., 2005) were implemented, the RERs ranged from 65% to 67% for summer/falls, and from 57% to 60% for Skagit springs (Tables 13 through 20). These RERs were all higher than in the corresponding simulations run under assumed current habitat. For Skagit summer/falls, the increase in RER attributable to habitat restoration ranged from 3 percentage points (compare Table 18 to Table 10) to 7 percentage points (compare Table 13 to Table 5). For Skagit springs, the increase in RER ranged from 5 percentage points (compare Table 20 to Table 12) to 10 percentage points (compare Table 15 to Table 7).

At the current RERs, assuming the habitat restoration actions are carried out, the probability that the escapement after 25 years would exceed Eviable ranged from 95% to 99% for summer/falls, and from 93% to 98% for springs (Tables 13 through 20). These probabilities were two to seven percentage points higher than under current habitat conditions.

The RERs calculated from each of these simulations are summarized in Table 21.

IV. DISCUSSION

The RERs in the 2004-2009 Comprehensive Chinook Management Plan were 50\% for Skagit summer/fall Chinook and 38% for Skagit spring Chinook (PSIT and WDFW 2004). The analysis described in this paper indicates that, under the most-recently calibrated version of FRAM, these ER ceilings achieve the risk criteria for recovery and survival described in Chapter 4.3 of this Plan.

It would also not be necessary to "FRAMize" these rates, because they were developed using FRAM-generated exploitation rates. However, this does not solve all "FRAMization" problems, because, while there would be no need to convert FRAM-output exploitation rates to a different scale for preseason planning, there is still the problem of determining post-season, from coded-wire tag (CWT) recoveries, whether the exploitation rate objectives were met. That is, are FRAM generated exploitation rates equivalent to CWT-generated exploitation rates? This may or may not be the case. If we compare FRAM brood year exploitation rates to CWT AEQ brood year exploitation rates, for recent-year Skagit summer/fall and spring Chinook, we get the following (data sources are FRAM validation runs, and RMIS CWT recovery database):

Skagit Summer/Falls

Skagit Spring Chinook

BY	FRAM BY ER	CWT AEQ ER	FRAM BY ER	Fingerling CWT AEQ ER	Yearling CWT AEQ ER
1993			49\%	22.1\%	39.4\%
1994	33\%	30.5\%	41\%	17.3\%	31.4\%
1995	36\%	20.6\%	25\%	28.7\%	28.6\%
1996	37\%	21.0\%	20\%	12.5\%	14.9\%
1997	42\%	30.2\%	21\%	20.6\%	40.8\%
1998	34\%	29.4\%	41\%	18.2\%	19.5\%
1999	49\%	36.4\%	27\%	31.7\%	33.4\%
2000	36\%	20.0\%			
2001	46\%	21.3\%			

Before jumping to too many conclusions, note that the CWT ERs do not include non-landed mortalities, which can be a big part of the exploitation rate (the CWT recoveries are just those listed on RMIS). Thus, it is not possible, just from these data, to determine whether there is a bias in the FRAM exploitation rates, compared to CWT exploitation rates. But this is something that will need to be addressed in more detail when evaluating both FRAM and the performance of the Comprehensive Chinook plan.

The modeled effects of habitat restoration (Tables 13 through 20) indicate that higher exploitation rates would be allowable if habitat is restored. The degree of change may seem small for summer/falls (RERs would only increase by 3 to 7 percentage points), but Upper Skagit summers are also the Puget Sound wild Chinook population that is closest to achieving its recovery goals (WDFW 2002); thus, the habitat doesn't need quite as much improvement as it does for other Chinook stocks. For Skagit springs, which are farther from achieving recovery, the effect of habitat restoration on the RER is greater - 5 to 10 percentage points. For stocks with much more trashed habitat, like Stillaguamish, the effect of habitat restoration would likely be much greater - the current RER for Stillaguamish is 25%; under restored conditions, the Stillaguamish should have approximately the same productivity as the Skagit (Ruckelshaus et al. 2005, Vol. I, pg 137); thus, approximately the same RER. Since the RERs calculated for the Skagit, with all the habitat restoration actions taken, are in the 60% to 70% range (Table 21), this means that, with habitat restoration, the Stillaguamish RER could increase by 35 to 40 percentage points! This would obviously be a substantial change, and highlights the oft-repeated mantra that harvest management can only do so much - in Puget Sound, habitat is the key to Chinook salmon recovery.

Table 1. Escapement and recruitment estimates for Skagit summer/fall Chinook. Recruitments were calculated two different ways: by expanding the observed escapements by the exploitation rates generated from the FRAM validation runs (column titled "From FRAM ER"); and by summing together the AEQ mortalities plus escapements from the FRAM validation runs (column titled "From FRAM R"). For the analyses in this report, the values from the "From FRAM ER" column were used.

		Wild Recruitment	
		From	From
Brood Yr	Spawners	FRAM ER	FRAM R
1981	8283	72966	77244
1982	9910	57647	54248
1983	8723	22067	23395
1984	12628	38534	38979
1985	16002	21312	22013
1986	17908	35515	36647
1987	9409	20780	20384
1988	11468	19532	18675
1989	6684	18309	20334
1990	16792	13059	12519
1991	5824	21152	19966
1992	7348	18858	19262
1993	5801	18068	18799
1994	5655	21562	19599
1995	6985	6345	6468
1996	10706	25932	26891
1997	4951	27544	27128
1998	14700	22413	18635
1999	5035	28044	28416
2000	17126	36771	38644
2001	13945	40198	41325

Table 2. Escapement and recruitment estimates for Skagit spring Chinook. Recruitments were calculated two different ways: by expanding the observed escapements by the exploitation rates generated from the FRAM validation runs (column titled "From FRAM ER"); and by summing together the AEQ mortalities plus escapements from the FRAM validation runs (column titled "From FRAM R"). For the analyses in this report, the values from the "From FRAM ER" column were used.

		Wild Recruitment	
		From	From
Brood Yr	Spawners	FRAM ER	FRAM R
1981	1361	5257	4706
1982	965	7212	6667
1983	710	4124	4167
1984	755	4948	5646
1985	3248	3438	3333
1986	1977	4742	5308
1987	1981	2830	2314
1988	2064	2911	2905
1989	1516	1949	1046
1990	1592	1120	764
1991	1442	1463	2469
1992	986	2112	3601
1993	782	1611	1534
1994	470	1966	1569
1995	855	1057	487
1996	1051	1114	1161
1997	1041	1881	3072
1998	1086	1860	1330
1999	471	1277	1449
2000	1021	1840	2619
2001	1856	1969	1368

Table 3. Age composition of the escapement of each brood year of Skagit summer/fall Chinook, calculated from the 2007 FRAM validation runs. Note that the age composition of the escapement is different from the age composition of the recruitment, which has a bigger contribution of age 2 and age 3 fish.

SKAGIT SUMMER/FALL CHINOOK

Brood Year	Age 2+3	Age 4	Age 5
1981	25.1\%	65.7\%	9.2\%
1982	26.1\%	67.8\%	6.1\%
1983	18.7\%	70.7\%	10.6\%
1984	20.5\%	72.2\%	7.3\%
1985	17.7\%	68.6\%	13.7\%
1986	18.5\%	74.7\%	6.8\%
1987	38.9\%	55.8\%	5.4\%
1988	14.6\%	79.7\%	5.7\%
1989	27.0\%	64.3\%	8.7\%
1990	21.1\%	71.9\%	7.0\%
1991	35.0\%	60.3\%	4.7\%
1992	27.5\%	69.4\%	3.1\%
1993	47.5\%	40.7\%	11.8\%
1994	10.0\%	83.9\%	6.1\%
1995	20.8\%	67.2\%	12.0\%
1996	9.3\%	82.9\%	7.8\%
1997	23.0\%	64.5\%	12.5\%
1998	12.5\%	81.9\%	5.5\%
1999	34.0\%	45.7\%	20.3\%
2000	16.0\%	57.1\%	26.9\%
2001	30.6\%	55.6\%	13.9\%

Table 4. Age composition of the escapement of each brood year of Skagit spring Chinook, calculated from the 2007 FRAM validation runs. Note that the age composition of the escapement is different from the age composition of the recruitment, which has a bigger contribution of age 2 and age 3 fish.

SKAGIT SPRING CHINOOK

Brood Year	Age 2+3	Age 4	Age 5
1981	5.8\%	86.9\%	7.2\%
1982	21.6\%	64.8\%	13.6\%
1983	9.3\%	66.9\%	23.8\%
1984	14.4\%	69.8\%	15.8\%
1985	7.8\%	76.5\%	15.8\%
1986	26.3\%	60.0\%	13.8\%
1987	3.0\%	82.3\%	14.7\%
1988	22.9\%	52.1\%	25.0\%
1989	3.3\%	72.6\%	24.0\%
1990	15.8\%	42.3\%	41.9\%
1991	9.4\%	66.8\%	23.8\%
1992	14.5\%	77.6\%	7.9\%
1993	3.1\%	66.2\%	30.7\%
1994	8.2\%	64.2\%	27.6\%
1995	7.3\%	51.5\%	41.2\%
1996	0.5\%	33.4\%	66.1\%
1997	2.2\%	73.6\%	24.2\%
1998	14.8\%	46.0\%	39.2\%
1999	7.2\%	83.7\%	9.2\%
2000	3.9\%	88.7\%	7.4\%
2001	12.2\%	61.4\%	26.4\%

Table 5. Simulated results of modeling Skagit summer/fall Chinook recruitments, catches, and escapements at different target exploitation rates (ER), over a $25-\mathrm{yr}$ period, 2,000 times for each target ER, using a Ricker spawner-recruit relation, in which the underlying spawner-recruit parameters vary for each $25-\mathrm{yr}$ run. The highest ER that achieves jeopardy standards is underlined and bolded.

Skagit Summer/Fall Chinook with Ricker Spawner-Recruit Parameters that Vary for Each 25-Yr Run

Years/Run: SR Model: Erecov:	$\begin{array}{r} 25 \\ \text { Ricker } \\ 8632 \end{array}$		Runs/ER: Ecrit: ELowObs	$\begin{aligned} & 2000 \\ & 1179 \\ & 6000 \end{aligned}$		Marine Surv Starting Off	ycle (yrs): et to cycle:	24 $\pi / 2$	
	Mean	Mean	Mean		\# End	\# End		\% End	\% End
Target ER	Recruits	Catch	Esc	\# < Ecrit	$<$ Erecov	Extinct	\% < Ecrit	$<$ Erecov	Extinct
0\%	30425	0	30425	98	192	0	0.2\%	9.6\%	0.0\%
5\%	32348	4852	27496	26	176	0	0.1\%	8.8\%	0.0\%
10\%	31859	4779	27080	34	190	0	0.1\%	9.5\%	0.0\%
15\%	31870	5197	26673	41	168	0	0.1\%	8.4\%	0.0\%
20\%	33771	6878	26893	22	180	0	0.0\%	9.0\%	0.0\%
25\%	33830	8586	25243	15	181	0	0.0\%	9.1\%	0.0\%
30\%	34365	10465	23901	11	187	0	0.0\%	9.4\%	0.0\%
35\%	35860	12744	23116	21	204	0	0.0\%	10.2\%	0.0\%
40\%	36074	14652	21422	11	152	0	0.0\%	7.6\%	0.0\%
45\%	36540	16681	19858	14	193	0	0.0\%	9.7\%	0.0\%
50\%	36837	18733	18104	37	232	1	0.1\%	11.6\%	0.1\%
55\%	36405	20333	16071	84	259	1	0.2\%	13.0\%	0.1\%
60\%	36460	22180	14280	269	363	0	0.5\%	18.2\%	0.0\%
61\%	36078	22364	13714	387	446	2	0.8\%	22.3\%	0.1\%
62\%	36056	22658	13397	424	491	1	0.8\%	24.6\%	0.1\%
63\%	35284	22518	12766	588	515	4	1.2\%	25.8\%	0.2\%
64\%	34330	22333	11997	863	621	7	1.7\%	31.1\%	0.4\%
65\%	34184	22531	11653	1137	643	6	2.3\%	32.2\%	0.3\%
70\%	31195	22155	9040	4151	1158	93	8.3\%	57.9\%	4.7\%
75\%	25387	19226	6161	11651	1611	463	23.3\%	80.6\%	23.2\%
80\%	22707	18128	4579	18567	1832	976	37.1\%	91.6\%	48.8\%

Table 6. Simulated results of modeling Skagit summer/fall Chinook recruitments, catches, and escapements at different target exploitation rates (ER), over a 25-yr period, 2,000 times for each target ER, using a Beverton-Holt spawner-recruit relation, in which the underlying spawner-recruit parameters vary for each $25-\mathrm{yr}$ run. The highest ER that achieves jeopardy standards is underlined and bolded.

Skagit Summer/Fall Chinook with Beverton-Holt Spawner-Recruit Parameters that Vary for Each 25-Yr Run

Years/Run: SR Model: Erecov:	$\begin{array}{r} 25 \\ \text { Bev-Holt } \\ 6986 \end{array}$		Runs/ER: Ecrit: ELowObs	$\begin{aligned} & 2000 \\ & 1664 \\ & 6000 \end{aligned}$		Marine Surv Starting Of	ycle (yrs): et to cycle:	24 $\pi / 2$	
	Mean	Mean	Mean		\# End	\# End		\% End	\% End
Target ER	Recruits	Catch	Esc	\# < Ecrit	$<$ Erecov	Extinct	\% < Ecrit	$<$ Erecov	Extinct
0\%	39907	0	39907	3	10	0	0.0\%	0.5\%	0.0\%
5\%	39887	5983	33904	7	11	0	0.0\%	0.6\%	0.0\%
10\%	39181	5877	33304	2	19	0	0.0\%	1.0\%	0.0\%
15\%	39593	6464	33129	8	16	0	0.0\%	0.8\%	0.0\%
20\%	39260	7984	31276	16	16	0	0.0\%	0.8\%	0.0\%
25\%	38729	9819	28910	27	24	0	0.1\%	1.2\%	0.0\%
30\%	38090	11613	26476	21	33	0	0.0\%	1.7\%	0.0\%
35\%	38278	13605	24673	28	50	0	0.1\%	2.5\%	0.0\%
40\%	38447	15602	22846	36	24	0	0.1\%	1.2\%	0.0\%
45\%	37496	17102	20394	79	64	0	0.2\%	3.2\%	0.0\%
50\%	37414	18979	18435	201	94		0.4\%	4.7\%	0.1\%
55\%	35824	19997	15827	560	155	3	1.1\%	7.8\%	0.2\%
60\%	34083	20769	13315	1089	257	7	2.2\%	12.9\%	0.4\%
61\%	33811	20938	12873	1377	310	16	2.8\%	15.5\%	0.8\%
62\%	32804	20631	12174	1703	376	10	3.4\%	18.8\%	0.5\%
63\%	33291	21288	12003	1819	406	17	3.6\%	20.3\%	0.9\%
64\%	32771	21252	11519	2324	521	23	4.6\%	26.1\%	1.2\%
65\%	31929	21066	10863	3111	611	41	6.2\%	30.6\%	2.1\%
70\%	27806	19792	8015	7980	1107	188	16.0\%	55.4\%	9.4\%
75\%	23054	17484	5570	16498	1628	676	33.0\%	81.4\%	33.8\%
80\%	19325	15457	3868	23579	1891	1200	47.2\%	94.6\%	60.0\%

Table 7. Simulated results of modeling Skagit spring Chinook recruitments, catches, and escapements at different target exploitation rates (ER), over a $25-\mathrm{yr}$ period, 2,000 times for each target ER, using a Ricker spawner-recruit relation, in which the underlying spawner-recruit parameters vary for each 25-yr run. The highest ER that achieves jeopardy standards is underlined and bolded.

Skagit Spring Chinook with Ricker Spawner-Recruit Parameters that Vary for Each 25-Yr Run

Years/Run: SR Model: Erecov:	$\begin{array}{r} 25 \\ \text { Ricker } \\ 1055 \end{array}$	Runs/ER: Ecrit: ELowObs		$\begin{array}{r} 2000 \\ 135 \\ 470 \end{array}$	Marine Surv Cycle (yrs): Starting Offset to cycle:			$\begin{gathered} 24 \\ \pi / 2 \end{gathered}$	
	Mean	Mean	Mean		\# End	\# End		\% End	\% End
Target ER	Recruits	Catch	Esc	\# < Ecrit	$<$ Erecov	Extinct	\% < Ecrit	$<$ Erecov	Extinct
0\%	3560	0	3560	31	138	0	0.1\%	6.9\%	0.0\%
5\%	3733	210	3523	28	126	0	0.1\%	6.3\%	0.0\%
10\%	3696	369	3327	27	140	0	0.1\%	7.0\%	0.0\%
15\%	3687	554	3133	16	143	0	0.0\%	7.2\%	0.0\%
20\%	3737	749	2988	9	137	0	0.0\%	6.9\%	0.0\%
25\%	3866	966	2900	17	144	0	0.0\%	7.2\%	0.0\%
30\%	3843	1149	2694	23	174	0	0.0\%	8.7\%	0.0\%
35\%	3848	1341	2506	43	215	0	0.1\%	10.8\%	0.0\%
40\%	3849	1535	2315	42	239	0	0.1\%	12.0\%	0.0\%
45\%	3844	1733	2111	139	322	0	0.3\%	16.1\%	0.0\%
46\%	3783	1739	2043	156	344	1	0.3\%	17.2\%	0.1\%
47\%	3732	1758	1973	193	357	2	0.4\%	17.9\%	0.1\%
48\%	3733	1791	1942	240	395	3	0.5\%	19.8\%	0.2\%
49\%	3772	1849	1922	297	405	7	0.6\%	20.3\%	0.4\%
50\%	3833	1914	1919	266	460	5	0.5\%	23.0\%	0.3\%
55\%	3617	1979	1638	782	619	18	1.6\%	31.0\%	0.9\%
60\%	3523	2116	1407	2136	891	93	4.3\%	44.6\%	4.7\%
65\%	3143	2043	1099	5524	1236	317	11.0\%	61.8\%	15.9\%
70\%	2683	1861	822	10613	1538	663	21.2\%	76.9\%	33.2\%
75\%	2330	1695	635	15814	1757	1097	31.6\%	87.9\%	54.9\%
80\%	2127	1616	511	20018	1869	1374	40.0\%	93.5\%	68.7\%

Table 8. Simulated results of modeling Skagit spring Chinook recruitments, catches, and escapements at different target exploitation rates (ER), over a $25-y r$ period, 2,000 times for each target ER, using a Beverton-Holt spawner-recruit relation, in which the underlying spawner-recruit parameters vary for each 25-yr run. The highest ER that achieves jeopardy standards is underlined and bolded.

Skagit Spring Chinook with Beverton-Holt Spawner-Recruit Parameters that Varv for Each 25-Yr Run

Years/Run:	25		Runs/ER:	2000					
SR Model:	Bev-Holt		Ecrit:	150		Marine Surv	ycle (yrs):	24	
Erecov:	1055		ELowObs	470		Starting Off	t to cycle:	$\pi / 2$	
	Mean	Mean	Mean		\# End	\# End		\% End	\% End
Target ER	Recruits	Catch	Esc	\# < Ecrit	< Erecov	Extinct	\% < Ecrit	< Erecov	Extinct
0\%	3671	0	3671	6	73	0	0.0\%	3.7\%	0.0\%
5\%	3548	199	3349	19	85	0	0.0\%	4.3\%	0.0\%
10\%	3569	357	3212	25	82	0	0.1\%	4.1\%	0.0\%
15\%	3527	529	2998	19	103	0	0.0\%	5.2\%	0.0\%
20\%	3473	695	2778	47	131	0	0.1\%	6.6\%	0.0\%
25\%	3469	866	2603	67	169	0	0.1\%	8.5\%	0.0\%
30\%	3511	1050	2460	68	184	1	0.1\%	9.2\%	0.1\%
35\%	3480	1217	2263	104	213	0	0.2\%	10.7\%	0.0\%
40\%	3444	1378	2066	156	253	3	0.3\%	12.7\%	0.2\%
45\%	3351	1505	1846	340	328	2	0.7\%	16.4\%	0.1\%
46\%	3394	1566	1829	375	333	8	0.8\%	16.7\%	0.4\%
47\%	3365	1583	1782	299	343	5	0.6\%	17.2\%	0.3\%
48\%	3385	1625	1760	398	361	11	0.8\%	18.1\%	0.6\%
49\%	3376	1658	1718	339	376	4	0.7\%	18.8\%	0.2\%
50\%	3382	1687	1695	481	401	9	1.0\%	20.1\%	0.5\%
55\%	3288	1808	1480	824	531	22	1.6\%	26.6\%	1.1\%
60\%	3112	1867	1245	2088	768	75	4.2\%	38.4\%	3.8\%
65\%	2811	1824	987	5327	1122	233	10.7\%	56.1\%	11.7\%
70\%	2507	1733	774	10059	1447	549	20.1\%	72.4\%	27.5\%
75\%	2290	1666	624	14728	1679	892	29.5\%	84.0\%	44.6\%
80\%	2019	1533	486	19186	1840	1218	38.4\%	92.0\%	60.9\%

Table 9. Simulated results of modeling Skagit summer/fall Chinook recruitments, catches, and escapements at different target exploitation rates (ER), over a $25-$-yr period, 2,000 times for each target ER, using a Ricker spawner-recruit relation, in which the underlying spawner-recruit parameters remain constant for each $25-y r$ run. The highest ER that achieves jeopardy standards is underlined and bolded.

Skagit Summer/Fall Chinook with Ricker Spawner-Recruit Parameters Constant for Each 25-Yr Run

Years/Run: SR Model: Erecov:	25	Runs/ER:		20001179	Marine Surv Cycle (yrs):			24		
	Ricker		Ecrit:							
	8632		ELowObs	6000		Starting Of	to cycle:		$\pi / 2$	
	Mean	Mean	Mean		\# End	\# End		\% End	\% End	
Target ER	Recruits	Catch	Esc	\# < Ecrit	< Erecov	Extinct	\% < Ecrit	$<$ Erecov	Extinct	
0\%	26220	0	26220	54	200	0	0.1\%	10.0\%	0.0\%	
5\%	27841	4176	23665	10	166	0	0.0\%	8.3\%	0.0\%	
10\%	27914	4187	23727	13	174	0	0.0\%	8.7\%	0.0\%	
15\%	27847	4542	23305	8	164	0	0.0\%	8.2\%	0.0\%	
20\%	28427	5780	22647	9	166	0	0.0\%	8.3\%	0.0\%	
25\%	28981	7341	21639	4	133	0	0.0\%	6.7\%	0.0\%	
30\%	29498	8974	20524	1	144	0	0.0\%	7.2\%	0.0\%	
35\%	30155	10706	19449	2	151	0	0.0\%	7.6\%	0.0\%	
40\%	30639	12465	18173	3	134	0	0.0\%	6.7\%	0.0\%	
45\%	31183	14243	16940	0	150	0	0.0\%	7.5\%	0.0\%	
50\%	31529	16031	15498	4	162	0	0.0\%	8.1\%	0.0\%	
55\%	31322	17499	13823	26	198	0	0.1\%	9.9\%	0.0\%	
60\%	30612	18591	12021	127	343	0	0.3\%	17.2\%	0.0\%	
61\%	30400	18827	11572	153	376	0	0.3\%	18.8\%	0.0\%	
62\%	30144	18975	11169	213	425	0	0.4\%	21.3\%	0.0\%	
63\%	29830	19133	10697	384	479	0	0.8\%	24.0\%	0.0\%	
64\%	29474	19140	10334	520	555	2	1.0\%	27.8\%	0.1\%	
65\%	29054	19174	9880	691	662	4	1.4\%	33.1\%	0.2\%	
70\%	25717	18267	7450	3690	1215	71	7.4\%	60.8\%	3.6\%	
75\%	21355	16157	5197	11353	1725	443	22.7\%	86.3\%	22.2\%	
80\%	17895	14304	3591	19565	1926	1064	39.1\%	96.3\%	53.2\%	

Table 10. Simulated results of modeling Skagit summer/fall Chinook recruitments, catches, and escapements at different target exploitation rates (ER), over a 25-yr period, 2,000 times for each target ER, using a Beverton-Holt spawner-recruit relation, in which the underlying spawner-recruit parameters remain constant for each $25-\mathrm{yr}$ run. The highest ER that achieves jeopardy standards is underlined and bolded.

Skagit Summer/Fall Chinook with Beverton-Holt Spawner-Recruit Parameters Constant for Each 25-Yr Run

Table 11. Simulated results of modeling Skagit spring Chinook recruitments, catches, and escapements at different target exploitation rates (ER), over a $25-\mathrm{yr}$ period, 2,000 times for each target ER, using a Ricker spawner-recruit relation, in which the underlying spawner-recruit parameters remain constant for each $25-y r$ run. The highest ER that achieves jeopardy standards is underlined and bolded.

Skagit Spring Chinook with Ricker Spawner-Recruit Parameters Constant for Each 25-Yr Run									
Years/Run:	25		Runs/ER:	2000					
SR Model:	Ricker		Ecrit:	135		Marine Surv	ycle (yrs):	24	
Erecov:	1055		ELowObs	470		Starting Off	t to cycle:	$\pi / 2$	
	Mean	Mean	Mean		\# End	\# End		\% End	\% End
Target ER	Recruits	Catch	Esc	\# < Ecrit	< Erecov	Extinct	\% < Ecrit	< Erecov	Extinct
0\%	2944	0	2944	7	95	0	0.0\%	4.8\%	0.0\%
5\%	2979	149	2830	4	108	0	0.0\%	5.4\%	0.0\%
10\%	3024	303	2721	4	105	0	0.0\%	5.3\%	0.0\%
15\%	3073	461	2612	3	92	0	0.0\%	4.6\%	0.0\%
20\%	3108	621	2486	3	103	0	0.0\%	5.2\%	0.0\%
25\%	3135	786	2350	1	101	0	0.0\%	5.1\%	0.0\%
30\%	3144	945	2200	6	107	0	0.0\%	5.4\%	0.0\%
35\%	3169	1109	2060	12	136	0	0.0\%	6.8\%	0.0\%
40\%	3183	1273	1910	13	152	0	0.0\%	7.6\%	0.0\%
45\%	3163	1421	1742	25	247	0	0.1\%	12.4\%	0.0\%
50\%	3080	1535	1545	101	364	2	0.2\%	18.2\%	0.1\%
51\%	3077	1570	1507	126	354	3	0.3\%	17.7\%	0.2\%
52\%	3043	1580	1462	133	440	1	0.3\%	22.0\%	0.1\%
53\%	3028	1605	1424	200	478	2	0.4\%	23.9\%	0.1\%
54\%	3005	1619	1386	259	506	3	0.5\%	25.3\%	0.2\%
55\%	2975	1636	1339	392	575	8	0.8\%	28.8\%	0.4\%
60\%	2777	1670	1107	1489	945	50	3.0\%	47.3\%	2.5\%
65\%	2487	1616	870	5100	1363	271	10.2\%	68.2\%	13.6\%
70\%	2205	1528	678	10194	1665	685	20.4\%	83.3\%	34.3\%
75\%	1952	1424	529	15840	1848	1125	31.7\%	92.4\%	56.3\%
80\%	1772	1350	422	20783	1933	1465	41.6\%	96.7\%	73.3\%

Table 12. Simulated results of modeling Skagit summer/fall Chinook recruitments, catches, and escapements at different target exploitation rates (ER), over a $25-\mathrm{yr}$ period, 2,000 times for each target ER, using a Beverton-Holt spawner-recruit relation, in which the underlying spawner-recruit parameters remain constant for each $25-\mathrm{yr}$ run. The highest ER that achieves jeopardy standards is underlined and bolded.

Skagit Spring Chinook with Beverton-Holt Spawner-Recruit Parameters Constant for Each 25-Yr Run

Years/Run:	25		Runs/ER:	2000					
SR Model:	Bev-Holt		Ecrit:	150		Marine Surv	ycle (yrs):	24	
Erecov:	1055		ELowObs	470		Starting Off	to cycle:	$\pi / 2$	
	Mean	Mean	Mean		\# End	\# End		\% End	\% End
Target ER	Recruits	Catch	Esc	\# < Ecrit	$<$ Erecov	Extinct	\% < Ecrit	$<$ Erecov	Extinct
0\%	3570	0	3570	0	12	0	0.0\%	0.6\%	0.0\%
5\%	3555	177	3377	0	17	0	0.0\%	0.9\%	0.0\%
10\%	3546	355	3191	0	20	0	0.0\%	1.0\%	0.0\%
15\%	3537	531	3005	0	24	0	0.0\%	1.2\%	0.0\%
20\%	3542	709	2833	0	35	0	0.0\%	1.8\%	0.0\%
25\%	3491	873	2617	0	48	0	0.0\%	2.4\%	0.0\%
30\%	3499	1050	2449	0	56	0	0.0\%	2.8\%	0.0\%
35\%	3445	1205	2240	0	72	0	0.0\%	3.6\%	0.0\%
40\%	3403	1363	2040	2	110	0	0.0\%	5.5\%	0.0\%
45\%	3366	1514	1852	7	167	0	0.0\%	8.4\%	0.0\%
50\%	3309	1651	1658	44	237	0	0.1\%	11.9\%	0.0\%
55\%	3217	1768	1449	199	365	0	0.4\%	18.3\%	0.0\%
56\%	3185	1788	1397	203	457	2	0.4\%	22.9\%	0.1\%
57\%	3168	1809	1358	339	502	2	0.7\%	25.1\%	0.1\%
58\%	3169	1838	1331	400	565	5	0.8\%	28.3\%	0.3\%
59\%	3089	1826	1263	527	612	7	1.1\%	30.6\%	0.4\%
60\%	3068	1841	1227	860	691	14	1.7\%	34.6\%	0.7\%
65\%	2774	1797	977	3649	1063	141	7.3\%	53.2\%	7.1\%
70\%	2515	1738	777	7925	1407	421	15.9\%	70.4\%	21.1\%
75\%	2223	1623	599	13440	1691	853	26.9\%	84.6\%	42.7\%
80\%	1996	1520	476	18375	1862	1232	36.8\%	93.1\%	61.6\%

Table 13. Skagit summer/fall Chinook modeled recruitments, catches, and escapements that would be projected under different exploitation rates (ER), with Ricker spawner-recruit parameters varied after each 25 -year run, and assuming that the habitat restoration actions described in the Skagit Chinook Recovery Plan are carried out. The highest ER that achieves jeopardy standards is underlined and bolded.

Habitat Restoration Runs: Skagit Summer/Fall Chinook w/ Ricker Parameters Varied

Years/Run: SR Model: Erecov:	25		Runs/ER:	2000	Marine Surv Cycle (yrs): Starting Offset to cycle:			$\begin{gathered} 24 \\ \pi / 2 \end{gathered}$	
	Ricker		Ecrit:	1179					
	8632		ELowObs	6000					
	Mean	Mean	Mean		\# End	\# End		\% End	\% End
Target ER	Recruits	Catch	Esc	\# < Ecrit	< Erecov	Extinct	\% < Ecrit	< Erecov	Extinct
0\%	36915	0	36915	78	173	1	0.2\%	8.7\%	0.1\%
5\%	37107	1883	35224	66	202	0	0.1\%	10.1\%	0.0\%
10\%	38449	3904	34546	45	176	0	0.1\%	8.8\%	0.0\%
15\%	39314	6422	32891	46	141	0	0.1\%	7.1\%	0.0\%
20\%	38914	7913	31001	30	140	0	0.1\%	7.0\%	0.0\%
25\%	40261	10189	30071	11	143	0	0.0\%	7.2\%	0.0\%
30\%	41439	12605	28834	17	119	0	0.0\%	6.0\%	0.0\%
35\%	42283	15003	27280	9	123	0	0.0\%	6.2\%	0.0\%
40\%	43989	17875	26115	14	90	0	0.0\%	4.5\%	0.0\%
45\%	44365	20266	24100	13	104	0	0.0\%	5.2\%	0.0\%
50\%	45854	23259	22596	45	93	0	0.1\%	4.7\%	0.0\%
55\%	44922	25079	19843	46	97	0	0.1\%	4.9\%	0.0\%
60\%	44597	27125	17472	177	132	1	0.4\%	6.6\%	0.1\%
65\%	42447	27995	14452	724	269	9	1.4\%	13.5\%	0.5\%
66\%	42212	28270	13942	918	318	11	1.8\%	15.9\%	0.6\%
67\%	40843	27805	13038	1319	388	22	2.6\%	19.4\%	1.1\%
68\%	40580	27996	12584	1751	482	25	3.5\%	24.1\%	1.3\%
69\%	38835	27198	11637	2636	561	60	5.3\%	28.1\%	3.0\%
70\%	38141	27149	10992	3029	671	74	6.1\%	33.6\%	3.7\%
75\%	30968	23497	7471	9490	1267	341	19.0\%	63.4\%	17.1\%
80\%	25226	20138	5088	16773	1671	853	33.5\%	83.6\%	42.7\%

Table 14. Skagit summer/fall Chinook modeled recruitments, catches, and escapements that would be projected under different exploitation rates (ER), with Beverton-Holt spawner-recruit parameters varied after each 25-year run, and assuming that the habitat restoration actions described in the Skagit Chinook Recovery Plan are carried out. The highest ER that achieves jeopardy standards is underlined and bolded.

Habitat Restoration Runs: Skagit Summer/Fall Chinook w/ Beverton-Holt Parameters Varied

Years/Run: SR Model: Erecov:	$\begin{array}{r} 25 \\ \text { Bev-Holt } \\ 6986 \end{array}$		Runs/ER: Ecrit: ELowObs	$\begin{aligned} & 2000 \\ & 1664 \\ & 6000 \end{aligned}$	Marine Surv Cycle (yrs): Starting Offset to cycle:			24 $\pi / 2$	
	Mean	Mean	Mean		\# End	\# End		\% End	\% End
Target ER	Recruits	Catch	Esc	\# < Ecrit	$<$ Erecov	Extinct	\% < Ecrit	$<$ Erecov	Extinct
0\%	44120	0	44120	0	3	0	0.0\%	0.2\%	0.0\%
5\%	44160	2239	41921	2	3	0	0.0\%	0.2\%	0.0\%
10\%	44239	4491	39747	9	6	0	0.0\%	0.3\%	0.0\%
15\%	44199	7216	36983	3	9	0	0.0\%	0.5\%	0.0\%
20\%	44387	9021	35367	4	7	0	0.0\%	0.4\%	0.0\%
25\%	44044	11183	32861	6	5	0	0.0\%	0.3\%	0.0\%
30\%	43478	13250	30227	14	10	0	0.0\%	0.5\%	0.0\%
35\%	42624	15110	27514	12	18	0	0.0\%	0.9\%	0.0\%
40\%	42544	17318	25226	82	24	0	0.2\%	1.2\%	0.0\%
45\%	42282	19317	22964	80	32	0	0.2\%	1.6\%	0.0\%
50\%	42084	21347	20737	116	54	0	0.2\%	2.7\%	0.0\%
55\%	40810	22738	18072	291	77	3	0.6\%	3.9\%	0.2\%
60\%	38952	23661	15291	846	132	4	1.7\%	6.6\%	0.2\%
65\%	35730	23610	12120	2389	340	31	4.8\%	17.0\%	1.6\%
66\%	36098	24172	11926	2644	385	29	5.3\%	19.3\%	1.5\%
67\%	34995	23814	11181	3116	417	46	6.2\%	20.9\%	2.3\%
68\%	34290	23672	10618	3956	521	70	7.9\%	26.1\%	3.5\%
69\%	32708	22898	9810	5208	666	101	10.4\%	33.3\%	5.1\%
70\%	31778	22563	9216	6524	753	160	13.0\%	37.7\%	8.0\%
75\%	25275	19191	6084	14842	1415	570	29.7\%	70.8\%	28.5\%
80\%	20986	16732	4254	21901	1772	1103	43.8\%	88.6\%	55.2\%

Table 15. Skagit spring Chinook modeled recruitments, catches, and escapements that would be projected under different exploitation rates (ER), with Ricker spawner-recruit parameters varied after each 25 -year run, and assuming that the habitat restoration actions described in the Skagit Chinook Recovery Plan are carried out. The highest ER that achieves jeopardy standards is underlined and bolded.

Habitat Restoration Runs: Skagit Spring Chinook w/ Ricker Parameters Varied

Years/Run: SR Model: Erecov:	25		Runs/ER:	2000	Marine Surv Cycle (yrs): Starting Offset to cycle:			$\begin{array}{r} 24 \\ \pi / 2 \end{array}$	
	Ricker		Ecrit:	135					
	1055		ELowObs	470					
	Mean	Mean	Mean		\# End	\# End		\% End	\% End
Target ER	Recruits	Catch	Esc	\# < Ecrit	< Erecov	Extinct	\% < Ecrit	< Erecov	Extinct
0\%	4351	0	4351	36	93	0	0.1\%	4.7\%	0.0\%
5\%	4499	226	4273	25	83	0	0.1\%	4.2\%	0.0\%
10\%	4435	445	3991	29	79	0	0.1\%	4.0\%	0.0\%
15\%	4469	672	3797	13	78	0	0.0\%	3.9\%	0.0\%
20\%	4566	915	3651	19	75	0	0.0\%	3.8\%	0.0\%
25\%	4667	1173	3493	16	70	0	0.0\%	3.5\%	0.0\%
30\%	4758	1423	3336	6	69	0	0.0\%	3.5\%	0.0\%
35\%	4772	1673	3099	13	93	0	0.0\%	4.7\%	0.0\%
40\%	4717	1882	2836	26	87	0	0.1\%	4.4\%	0.0\%
45\%	4817	2169	2648	63	132	0	0.1\%	6.6\%	0.0\%
50\%	4627	2312	2315	187	162	1	0.4\%	8.1\%	0.1\%
55\%	4362	2402	1960	501	259	8	1.0\%	13.0\%	0.4\%
56\%	4375	2444	1931	722	316	16	1.4\%	15.8\%	0.8\%
57\%	4361	2495	1866	716	360	17	1.4\%	18.0\%	0.9\%
58\%	4264	2469	1795	943	383	24	1.9\%	19.2\%	1.2\%
59\%	4331	2557	1773	1285	429	44	2.6\%	21.5\%	2.2\%
60\%	4016	2410	1605	1607	510	51	3.2\%	25.5\%	2.6\%
65\%	3673	2392	1282	4828	897	222	9.7\%	44.9\%	11.1\%
70\%	3067	2137	931	9708	1281	563	19.4\%	64.1\%	28.2\%
75\%	2691	1954	737	14418	1573	922	28.8\%	78.7\%	46.1\%
80\%	2325	1772	554	18448	1781	1212	36.9\%	89.1\%	60.6\%

Table 16. Skagit spring Chinook modeled recruitments, catches, and escapements that would be projected under different exploitation rates (ER), with Beverton-Holt spawner-recruit parameters varied after each 25-year run, and assuming that the habitat restoration actions described in the Skagit Chinook Recovery Plan are carried out. The highest ER that achieves jeopardy standards is underlined and bolded.

Habitat Restoration Runs: Skagit Spring Chinook w/ Beverton-Holt Parameters Varied

Years/Run: SR Model: Erecov:	$\begin{array}{r} 25 \\ \text { Bev-Holt } \\ 1055 \end{array}$		Runs/ER: Ecrit: ELowObs	$\begin{array}{r} 2000 \\ 150 \\ 470 \end{array}$	Marine Surv Cycle (yrs): Starting Offset to cycle:			$\begin{array}{r} 24 \\ \pi / 2 \end{array}$		
	Mean	Mean	Mean		\# End	\# End			\% End	\% End
Target ER	Recruits	Catch	Esc	\# < Ecrit	$<$ Erecov	Extinct	\% < Ecrit		$<$ Erecov	Extinct
0\%	4026	0	4026	7	40	0	0.0\%	2.0\%	0.0\%	
5\%	4008	200	3808	9	54	0	0.0\%	2.7\%	0.0\%	
10\%	3970	397	3573	22	59	0	0.0\%	3.0\%	0.0\%	
15\%	3995	599	3395	17	61	0	0.0\%	3.1\%	0.0\%	
20\%	3954	790	3164	30	80	0	0.1\%	4.0\%	0.0\%	
25\%	3892	975	2917	44	102	0	0.1\%	5.1\%	0.0\%	
30\%	3921	1174	2747	41	88	0	0.1\%	4.4\%	0.0\%	
35\%	3973	1390	2583	71	122	0	0.1\%	6.1\%	0.0\%	
40\%	3787	1509	2278	113	150	2	0.2\%	7.5\%	0.1\%	
45\%	3868	1744	2124	169	182	0	0.3\%	9.1\%	0.0\%	
50\%	3790	1900	1890	342	255	3	0.7\%	12.8\%	0.2\%	
55\%	3708	2040	1668	822	350	18	1.6\%	17.5\%	0.9\%	
56\%	3688	2062	1625	656	345	9	1.3\%	17.3\%	0.5\%	
57\%	3708	2115	1593	932	351	22	1.9\%	17.6\%	1.1\%	
58\%	3535	2042	1493	1228	469	29	2.5\%	23.5\%	1.5\%	
59\%	3572	2110	1463	1409	459	38	2.8\%	23.0\%	1.9\%	
60\%	3546	2132	1414	1618	504	36	3.2\%	25.2\%	1.8\%	
65\%	3278	2125	1153	4392	854	179	8.8\%	42.7\%	9.0\%	
70\%	2891	2006	885	8365	1187	408	16.7\%	59.4\%	20.4\%	
75\%	2556	1863	692	13037	1461	715	26.1\%	73.1\%	35.8\%	
80\%	2298	1748	550	17389	1692	1039	34.8\%	84.6\%	52.0\%	

Table 17. Skagit summer/fall Chinook modeled recruitments, catches, and escapements that would be projected under different exploitation rates (ER), with Ricker spawner-recruit parameters held constant after each $25-y e a r$ run, and assuming that the habitat restoration actions described in the Skagit Chinook Recovery Plan are carried out. The highest ER that achieves jeopardy standards is underlined and bolded.

Habitat Restoration Runs: Skagit Summer/Fall Chinook w/ Ricker Parameters Held Constant

Years/Run: SR Model: Erecov:	25		Runs/ER:	2000	Marine Surv Cycle (yrs): Starting Offset to cycle:			24$\pi / 2$	
	Ricker		Ecrit:	1179					
	8632		ELowObs	6000					
	Mean	Mean	Mean		\# End	\# End		\% End	\% End
Target ER	Recruits	Catch	Esc	\# < Ecrit	$<$ Erecov	Extinct	\% < Ecrit	< Erecov	Extinct
0\%	31575	0	31575	38	191	0	0.1\%	9.6\%	0.0\%
5\%	32136	1631	30505	21	168	0	0.0\%	8.4\%	0.0\%
10\%	32805	3332	29473	14	137	0	0.0\%	6.9\%	0.0\%
15\%	33634	5486	28147	12	145	0	0.0\%	7.3\%	0.0\%
20\%	34198	6955	27243	14	127	0	0.0\%	6.4\%	0.0\%
25\%	34999	8877	26122	7	142	0	0.0\%	7.1\%	0.0\%
30\%	35925	10944	24981	3	105	0	0.0\%	5.3\%	0.0\%
35\%	36299	12895	23404	0	100	0	0.0\%	5.0\%	0.0\%
40\%	37411	15192	22219	7	59	0	0.0\%	3.0\%	0.0\%
45\%	37785	17265	20520	1	74	0	0.0\%	3.7\%	0.0\%
50\%	38671	19653	19018	3	74	0	0.0\%	3.7\%	0.0\%
55\%	38608	21567	17041	7	64	0	0.0\%	3.2\%	0.0\%
60\%	38033	23160	14873	50	79	0	0.1\%	4.0\%	0.0\%
65\%	35760	23561	12199	360	230	2	0.7\%	11.5\%	0.1\%
66\%	35265	23614	11652	664	271	6	1.3\%	13.6\%	0.3\%
67\%	34486	23418	11068	818	329	11	1.6\%	16.5\%	0.6\%
68\%	33422	23036	10385	1207	438	16	2.4\%	21.9\%	0.8\%
69\%	32297	22652	9645	1614	575	26	3.2\%	28.8\%	1.3\%
70\%	31580	22410	9170	2302	663	34	4.6\%	33.2\%	1.7\%
75\%	24598	18640	5957	9696	1377	353	19.4\%	68.9\%	17.7\%
80\%	20071	16011	4059	17237	1795	868	34.5\%	89.8\%	43.4\%

Table 18. Skagit summer/fall Chinook modeled recruitments, catches, and escapements that would be projected under different exploitation rates (ER), with Beverton-Holt spawner-recruit parameters held constant after each 25-year run, and assuming that the habitat restoration actions described in the Skagit Chinook Recovery Plan are carried out. The highest ER that achieves jeopardy standards is underlined and bolded.

Habitat Restoration Runs: Skagit Summer/Fall Chinook w/ Beverton-Holt Parameters Held Constant

Years/Run:	25	Runs/ER:		2000		Marine Surv Cycle (yrs):		24		
SR Model:	Bev-Holt			1664						
Erecov:	6986		Obs	6000		rting Of	t to cycle:		$\pi / 2$	
	Mean	Mean	Mean		\# End	\# End		\% End	\% End	
Target ER	Recruits	Catch	Esc	\# < Ecrit	< Erecov	Extinct	\% < Ecrit	< Erecov	Extinct	
0\%	44639	0	44639	0	0	0	0.0\%	0.0\%	0.0\%	
5\%	44558	2259	42299	0	0	0	0.0\%	0.0\%	0.0\%	
10\%	44264	4496	39768	0	0	0	0.0\%	0.0\%	0.0\%	
15\%	44111	7193	36919	0	0	0	0.0\%	0.0\%	0.0\%	
20\%	44000	8943	35056	0	0	0	0.0\%	0.0\%	0.0\%	
25\%	43752	11112	32640	0	0	0	0.0\%	0.0\%	0.0\%	
30\%	43263	13190	30073	0	3	0	0.0\%	0.2\%	0.0\%	
35\%	43192	15369	27823	0	0	0	0.0\%	0.0\%	0.0\%	
40\%	42390	17206	25183	0	4	0	0.0\%	0.2\%	0.0\%	
45\%	42113	19261	22851	0	5	0	0.0\%	0.3\%	0.0\%	
50\%	41229	20928	20301	5	9	0	0.0\%	0.5\%	0.0\%	
55\%	40441	22606	17835	37	27	0	0.1\%	1.4\%	0.0\%	
60\%	38914	23712	15202	174	50	0	0.3\%	2.5\%	0.0\%	
65\%	36146	23875	12271	1056	216	5	2.1\%	10.8\%	0.3\%	
66\%	34986	23469	11517	1587	261	18	3.2\%	13.1\%	0.9\%	
67\%	34289	23323	10966	2071	349	14	4.1\%	17.5\%	0.7\%	
68\%	33395	23050	10345	2853	443	35	5.7\%	22.2\%	1.8\%	
69\%	32755	22949	9806	3664	542	49	7.3\%	27.1\%	2.5\%	
70\%	31335	22301	9034	4973	670	89	9.9\%	33.5\%	4.5\%	
75\%	25190	19099	6091	13394	1414	487	26.8\%	70.7\%	24.4\%	
80\%	20157	16112	4044	22115	1800	1121	44.2\%	90.0\%	56.1\%	

Table 19. Skagit summer/fall Chinook modeled recruitments, catches, and escapements that would be projected under different exploitation rates (ER), with Ricker spawner-recruit parameters held constant after each 25 -year run, and assuming that the habitat restoration actions described in the Skagit Chinook Recovery Plan are carried out. The highest ER that achieves jeopardy standards is underlined and bolded.

Table 20. Skagit spring Chinook modeled recruitments, catches, and escapements that would be projected under different exploitation rates (ER), with Beverton-Holt spawner-recruit parameters held constant after each 25-year run, and assuming that the habitat restoration actions described in the Skagit Chinook Recovery Plan are carried out. The highest ER that achieves jeopardy standards is underlined and bolded.

Habitat Restoration Runs: Skagit Spring Chinook w/ Beverton-Holt Parameters Held Constant

Table 21. Summary of the RERs derived from each type of simulation, for Skagit summer/fall and spring Chinook (from Tables 5 through 20). The rightmost column lists the probability that escapement will exceed $\mathrm{E}_{\text {recov }}$ at the current RER (50\% for Skagit summer/falls, and $\mathbf{3 8 \%}$ for Skagit spring Chinook).

	Spawner-Recruit	Spawner-Recruit	Habitat Restoration		$\mathbf{P}\left(>\mathbf{E}_{\text {recov }}\right) @$ Current
Summer/Fall	Ricker	Vary Each Run	Current Habitat	60\%	88\%
Summer/Fall	Beverton-Holt	Vary Each Run	Current Habitat	62\%	95\%
Spring	Ricker	Vary Each Run	Current Habitat	48\%	88\%
Spring	Beverton-Holt	Vary Each Run	Current Habitat	49\%	88\%
Summer/Fall	Ricker	Constant	Current Habitat	61\%	92\%
Summer/Fall	Beverton-Holt	Constant	Current Habitat	64\%	98\%
Spring	Ricker	Constant	Current Habitat	51\%	93\%
Spring	Beverton-Holt	Constant	Current Habitat	55\%	95\%
Summer/Fall	Ricker	Vary Each Run	Restored Habitat	67\%	95\%
Summer/Fall	Beverton-Holt	Vary Each Run	Restored Habitat	65\%	97\%
Spring	Ricker	Vary Each Run	Restored Habitat	58\%	95\%
Spring	Beverton-Holt	Vary Each Run	Restored Habitat	57\%	93\%
Summer/Fall	Ricker	Constant	Restored Habitat	67\%	96\%
Summer/Fall	Beverton-Holt	Constant	Restored Habitat	67\%	99\%
Spring	Ricker	Constant	Restored Habitat	59\%	97\%
Spring	Beverton-Holt	Constant	Restored Habitat	60\%	98\%

Figure 1. Spawner-recruit curves for Skagit summer/fall Chinook (top) and spring Chinook (bottom). Recruitments were generated by expanding the observed escapements by the exploitation rates calculated from the FRAM validation runs. Two-digit numbers shown are the brood years.

Stillaguamish River Management Unit Status Profile

Component Populations

Stillaguamish summer Chinook
Stillaguamish fall Chinook

Geographic description

The Stillaguamish River management unit includes summer and fall stocks which are distinguished by differences in their spawning distribution, migration and spawning timing, and genetic characteristics. The summer stock, a composite of natural and hatchery-origin supplemental production, spawns in the North Fork, as far upstream as RM 34.4 but primarily between RM 14.3 and 30.0, and in the lower Boulder River and Squire Creek. Spawning also occurs in French, Deer, and Grant creeks, particularly when flows are high. The fall stock, which is not enhanced or supplemented by hatchery production, spawns throughout the South Fork and the mainstem of the Stillaguamish River (WDF et al.1993), and in Jim Creek, Pilchuck Creek, and lower Canyon Creek. Despite the small overlap in spawning distribution, it is likely that the two stocks are genetically distinct.

Allozyme analysis of the summer stock shows it to be most closely related to spring and summer Chinook stocks from North Puget Sound, and the Skagit River summer stocks in particular. The fall stocks align most closely with South Sound MAL, which includes Green River falls and Snohomish River summer and falls.

Life History Traits

Summer run adult enter the river from May through August. Spawning begins in late August, peaks in mid-September, and continues past mid-October. It is believed that the fall Chinook enter the river much later - in August and September. The peak of spawning of the fall stock occurs in early to mid-October, about three weeks later than the peak for the summer stock. The age composition of mature Stillaguamish River summer Chinook, based on scales collected from 1985 - 1991 was as follows: 4.9% age-2, 31.9% age-3, 54.7% age-4, and 8.5% age-6 (WDF 1993 cited in HGMP). Juvenile Chinook produced in the Stillaguamish River primarily ($>95 \%$) emigrate as sub-yearlings (Griffith et al. 2009).

Status

WDF et al. (1993) classified both the summer and fall stocks as depressed, due to chronically low escapement. Degraded spawning and rearing habitat currently limit the productivity of Chinook in the Stillaguamish River system (PFMC 1997). After analyzing the trends in spawning escapement through 1996, the PSC Chinook Technical Committee concluded that the stock was not rebuilding toward its escapement objective (CTC 1999).

Aggregate spawning escapement for Stillaguamish summer/fall Chinook has averaged 998 (geometric mean) for the period 2003-2008, down from a mean of 1,429 for 1998-2002. The 15year trend in total natural escapement of the summer stock is positive, while the natural-origin escapement trend is negative, although neither trend is biologically significant (see Chapter 7, Table 14). The trend in escapement of the fall stock is negative, with escapement falling below 200 in four of the last six years. Spawning escapement estimates of fall chinook may be biased low due to incomplete redd counts using visual sampling methods. Fall Chinook in the Stillaguamish are primarily October spawners but high flows and turbidity in the South Fork during most years preclude surveys by about mid-October.

Table 1. Spawning escapement of Stillaguamish summer/fall Chinook, 1986-2008.

	Summer Stock		Fall Stock
Year	NOR	Total	
1986	980	980	297
1987	1,065	1,065	256
1988	506	516	201
1989	483	537	274
1990	434	575	267
1991	978	1,331	301
1992	422	486	294
1993	380	583	345
1994	456	667	287
1995	431	599	223
1996	684	993	251
1997	613	930	226
1998	615	1,292	248
1999	514	845	253
2000	884	1,403	243
2001	653	1,066	283
2002	748	1,253	335
2003	401	884	106
2004	701	1,340	169
2005	444	947	89
2006	457	1,035	219
2007	311	569	40
2008	839	1393	278

The summer Chinook supplementation program, which collects broodstock from the North Fork return, was initiated in 1986 as a Pacific Salmon Treaty indicator stock program, and its current objective is to release 200,000 tagged fingerling smolts per year. Most releases are into the North Fork, via acclimation sites; relatively small numbers of smolts have been released into the South

Fork. This supplementation program is considered essential to the recovery of the stock, so these fish are included in the listed ESU. The program contributes substantially to spawning escapement in the North Fork.

As a response to low spawning escapements in the South Fork Stillaguamish River, the Stillaguamish Tribe initiated a program in 2007 to supplement the fall-timed Chinook stock with fry releases from broodstock captured from the South Fork. The intent was to implement a strategy similar to the one successfully employed on the North Fork. While broodstock collection on the North Fork is dependent on concentrations of adult Chinook in pre-spawning holding areas, such areas do not exist on the South Fork. The limited spawning population means that concentrations of adult fish may be defined as only 5 or 6 . Broodstock collection efforts are further hindered due to lack of visibility resulting from high turbidities typical of the South Fork in the fall. And while North Fork broodstock collections occur prior to pink salmon arrival in odd years, South Fork activities directly overlap the pink run. From a practical perspective, South Fork broodstock collection needs to be delayed until the majority of the pink salmon run has cleared. In $2007 \& 2008$ the program captured non-Stillaguamish Chinook, or single males, or single females, but to date no Stillaguamish-origin breeding pairs have been collected.

Other actions are being undertaken to collect Chinook for the South Fork program, including:

- Investigation of potential fall Chinook holding in deeper/cooler pools in the mainstem and the North Fork, where they could be captured, and screened using DNA analysis to determine their origin and suitability for the program
- Beach seine collection of outmigrants for use in a captive brood program similar to the program used on the Nooksack. There are currently 20 juvenile Chinook that were collected early in 2009 behind held at the Harvey Creek Hatchery.
- An adult trap has been installed at the Army Corps of Engineers flow augmentation dam downstream of I-5 on the mainstem Stillaguamish. The trap began fishing in August 2009, and has been very successful in the capture of coho and pink salmon. The mortality of capture and transfer to the hatchery are being evaluated using coho salmon.

Harvest distribution

Recoveries of coded-wire tagged North Fork Stillaguamish summer Chinook have provided an accurate description of harvest distribution in the past, although recent estimates are not available because releases were not adipose clipped for several years, precluding their recovery in fisheries that were not electronically sampled. Northern fisheries in Alaska and British Columbia accounted 67 percent of total harvest mortality (Table 2). Washington ocean fisheries accounted for around 2 percent. Washington sport fisheries accounted for 27 percent of total fisheries mortality.

Table 2. Average distribution of fishery mortality of Stillaguamish River summer Chinook, expressed as the proportion of fishery mortality, 2000, 2001, and 2006 (CTC 2008).

Year	AK\%	CN\%	US tr \%	US net\%	US spt \%
2000	27.5%	55.4%	2.7%	0.5%	14.0%
2001	5.6%	43.9%	0.9%	3.8%	45.9%
2006	10.6%	56.6%	3.4%	9.8%	19.6%
Average	14.6%	52.0%	2.3%	4.7%	26.5%

Exploitation rate trends

Post-season FRAM runs, incorporating actual catch in all fisheries and actual abundance, indicate that total fishery-related, adult equivalent, exploitation rates for Stillaguamish Chinook have fallen from an average of 47% for 1983 - 1997, to an average of 21% from 2000-2008 (Figure 1).
Southern U.S. rates have fallen even more dramatically, decreasing from an average of 35% in the 1980 's, to 10% since 2001.

Figure 1. Adult equivalent fishery exploitation rates of Stillaguamish Chinook in Alaska/BC, preterminal Southern United States, and terminal fisheries from 1983-2008, as estimated by post-season FRAM runs.

Management Objectives

The management guidelines for Stillaguamish Chinook include an exploitation rate ceiling and low abundance escapement thresholds. The exploitation rate ceiling is the maximum fraction of the production from any brood year that is allowed to be removed by all sources of fishery-related mortality, including direct take, incidental take, and non-landed mortality. The exploitation rate ceiling is expressed as an adult equivalent rate, in which the mortality of immature Chinook is discounted relative to their potential survival to maturity.

Analysis specific to Stillaguamish summer Chinook was completed to develop the exploitation rate ceiling to reflect, to the extent possible, the current productivity of the stock. Brood year recruitment (i.e., number of recruits per spawner) was estimated, for brood years 1986 through 1993, by reconstructing the total abundance of natural origin Chinook that were harvested or otherwise killed by fisheries, or escaped to spawn. The resulting brood year recruitment rates were partitioned into freshwater and marine survival rates. The future abundance (i.e. catch and escapement) of the stock was simulated for 25 years, using a simple population dynamics model, under total fishery exploitation rates that ranged from 5 percent to 60 percent. In the model, production from each year's escapement was subjected to randomly selected levels of freshwater and marine survival, and randomly selected levels of management error. Each model run (i.e. for each level of exploitation rate) was replicated one thousand times, and the set of projected population abundances was analyzed to determine the probability of achieving the management objectives for Stillaguamish summer Chinook, across a range of exploitation rates (Table 3).

The fishery management objective was to realize an exploitation rate that, if imposed consistently over a future time interval,

- would not increase the probability that the stock abundance would fall below the critical escapement threshold, after 25 years, by more than five percentage points higher than were no fishing mortality to occur; and
- would result in at least an 80 percent of greater probability of the stock recovering (i.e. escapement exceeding the current level) after 25 years.

Stock recovery, for this analysis, was defined as the average spawning escapement for the final three years in the simulation period exceeding the average for the first three years in the simulation period (Rawson 2000).

Table 3. Summary of results of $\mathbf{1 , 0 0 0}$ runs of the simulation model at each exploitation rate applied to Stillaguamish summer Chinook.

Exploitation Rate	Probability of falling below critical	Probability of Recovery	Median Escapement Ratio	Median Escapement
0.00	1%	96%	2.75	3,597
0.05	1%	96%	2.81	3,377
0.10	1%	96%	2.76	3,165
0.15	2%	95%	2.66	2,964
0.20	2%	95%	2.56	2,758
0.25	3%	93%	2.57	2,418
0.30	4%	92%	2.48	2,210
0.35	6%	92%	2.46	1,920
0.40	7%	91%	2.29	1,686
0.45	11%	87%	2.14	1,444
0.50	17%	80%	1.92	1,180
0.60	41%	52%	1.04	648
0.70	73%	12%	0.27	259
0.80	94%	0%	0.02	55

The results of this analysis applied to Stillaguamish summer Chinook indicate that exploitation rates at or below 35% would meet the management objectives. A similar analysis for the fall stock has not been conducted because information for deriving key parameters of the analysis such as productivity or exploitation rates for cohort reconstruction is unavailable. Given uncertainty about key parameters for defining an RER that is representative of the fall stock, the Washington comanagers have set an exploitation rate ceiling of 25% (FRAM estimated) for the Stillaguamish Chinook management unit. Setting the ER ceiling at a rate that is 10% lower than the RER level that meets the management objectives for the summer stock, in combination with including a new low abundance threshold for the fall stock (see below), is expected to provide adequate protection for the fall stock for the term of this RMP or until a new RER analysis for the fall stock can be derived.

The low abundance threshold (LAT) for Stillaguamish summer Chinook is 500 natural-origin spawners. Reconstruction of the total brood abundance of adult Stillaguamish Chinook suggests that escapements of $500(+/-50)$ can result in recruitment rates ranging from two to five adults per spawner (Rawson 2000). The genetic integrity of the stock may be at risk and depensatory mortality factors may affect the stock when annual escapement falls below this threshold to 200 (NMFS BO 2000). A critical threshold for Stillaguamish fall Chinook was not defined with the 2004 RMP. However, given concern for providing protection for this population with expected low abundance over the next five years, a low abundance threshold of 200 is defined for the fall population to be
used with the 2010 RMP. Whenever spawning escapement is projected to be below either the fall Chinook LAT of 200 or the summer chinook LAT of 500 , fisheries will be managed to either achieve the critical exploitation rate ceiling for the Stillaguamish management unit, or exceed the low abundance threshold for the population that is forecast to be in critical status.

When forecasts of abundance indicate spawning escapement will be at or less than the LAT for either the Stillaguamish summer or fall Chinook populations, the Co-managers will constrain southern U.S. fisheries to ensure that the total SUS ER for the Stillaguamish management unit is not greater than 15%. Pre-season estimates of the SUS ER associated with implementation of the Comanagers' 2004 RMP have been 15% or less, including for those years when the status of Stillaguamish Chinook was not critical. This approach has resulted in post-season estimates of the SUS ER that are generally less than the pre-season expectations (average 8% for 2003-2008). If continued low abundance of fall Chinook results in a chronic critical status for this population over the term of the RMP, fishery management strategies adopted in recent years that have resulted in SUS ER outcomes of less than 10% are likely to be continued.

Data gaps

Priorities for filling data gaps to improve understanding of stock / recruit functions or population dynamics simulations necessary to testing and refining harvest management objectives include:

- Development of an unbiased estimate of the spawning escapement for the fall population
- Estimates of natural-origin smolt production (freshwater survival to the estuary) for the summer and fall populations
- Analysis of DNA collected from Stillaguamish origin Chinook to refine the spatial and temporal characteristics of upstream migration and spawning
- Development of exploitation rate indicators (CWT or DNA) for the Stillaguamish fall population to determine if fishery impacts on this population are being correctly modeled in FRAM

Snohomish River Management Unit Status Profile

Component Populations

The stock structure of summer/fall Chinook in the Snohomish basin is based on the report of the Puget Sound TRT (Ruckelshaus et al. 2006) suggesting that there are two populations of summer/fall Chinook in the Snohomish basin. The comanagers have reviewed this report along with additional information, and have concluded that the former four-stock structure of Snohomish Chinook (WDF et al. 1993) should be revised to conform to the TRT's population structure.

Summer/fall Chinook management unit

Skykomish
Snoqualmie

Geographic description

Skykomish Chinook spawn in the mainstem of the Skykomish River, and its tributaries including the Wallace and Sultan Rivers, in Bridal Veil Creek, the South Fork of the Skykomish between RM 49.6 and RM 51.1 and above Sunset Falls (fish have been transported around the falls since 1958), and the North Fork up to Bear Creek Falls (RM 13.1). Relative to spawning distribution in the 1950's, a much larger proportion of summer Chinook currently spawn higher in the drainage, between Sultan and the forks of the Skykomish (Snohomish Basin Salmonid Recovery Technical Committee (SBSRTC) 1999). There is some indication that spawning in the North Fork has declined over the last twenty years (Snohomish Basin Salmonid Recovery Technical Committee (SBSRTC) 1999). Fish spawning in Snohomish mainstem and the Pilchuck River are currently considered to be part of the Skykomish stock pending further collection and analysis of genetic stock identification data.

Snoqualmie Chinook spawn in the Snoqualmie River and its tributaries, including the Tolt River, Raging River, and Tokul Creek.

There is some uncertainty whether a spring Chinook stock once existed in the Snohomish system. Suitable habitat may still exist in the upper North Fork, above Bear Creek Falls.

Life History Traits

Summer Chinook enter freshwater from May through July, and spawn, primarily, in September, while fall Chinook spawn from late September through October. However, fall Chinook spawning in the Snoqualmie River continues through November. The peak of spawning in Bridal Veil creek is in the second week of October (i.e. slightly later than the peak for fish spawning in the mainstem of the Skykomish. Natural spawning in the Wallace River occurs throughout September and October (WDF et al. 1993).

The age composition of returning Snoqualmie River fall Chinook showed a relatively strong age-5 component (28 percent), relative to other Puget Sound fall stocks. Age-3 and age-4 fish comprised 20 and 46 percent, respectively, of returns in 1993 - 1994 (Myers et al. 1998).

Most Snohomish summer and fall Chinook smolts emigrate as subyearlings, but, based on scale data, an annually variable, but relatively large, proportion of smolts are yearlings. Of the summer Chinook smolts sampled in 1993 and 1994, 33 percent were yearlings (Myers et al. 1998). Based on scale data, 25 to 30 percent of returning fall Chinook also showed a stream-type life history (Snohomish Basin Salmonid Recovery Technical Committee (SBSRTC) 1999). No other summer or fall Chinook stocks in Puget Sound produce this high a proportion of yearling smolts. Rearing habitat to support yearling smolt life history is vitally important to the recovery of these stocks.

Management Unit / Stock Status

Total natural spawning escapement of Snohomish summer/fall stocks has ranged between 2,700 and 10,600 since 1990 (Table 1). Escapement has shown a positive trend, averaging 4,060 through the 1990's, and increasing to an average of 6,964 since 2000.

Table 1. Natural escapement to the Snohomish basin, 1990-2008.

Year	Skykomish	Snoqualmie	Total	Natural origin
1990	2,932	1,277	4,209	
1991	2,192	628	2,820	
1992	2,002	706	2,708	2,242
1993	1,653	2,366	4,019	3,190
1994	2,898	728	3,626	2,039
1995	2,791	385	3,176	1,252
1996	3,819	1,032	4,851	2,379
1997	2,161	1,917	4,078	3,616
1998	4,414	1,892	6,306	2,919
1999	3,446	1,344	4,790	2,430
2000	4,668	1,427	6,095	3,227
2001	4,575	3,589	8,164	4,762
2002	4,327	2,896	7,223	4,255
2003	3,472	1,975	5,447	
2004	7,614	2,988	10,602	7,909
2005	3,203	1,281	4,484	
2006	5,693	2,615	8,308	6,896
2007	2,648	1,334	3,982	2,684
2008	5,813	2,560	8,373	6,970

Portions of the natural-spawning fish are the survivors of releases from the Wallace River and Bernie Kai-Kai Gobin (Tulalip) facilities. Since 1997 it has been possible to estimate the natural origin portion of the natural escapement because all Chinook production at the Bernie Kai-Kai Gobin and Wallace River hatcheries has been thermally or adipose mass-marked, and there has been
comprehensive sampling of adult Chinook in natural spawning areas. In most years the natural origin component of the natural escapement is significantly smaller than the total natural escapement estimate, although in many recent years the natural origin portion alone of the natural escapement has been higher than the total natural escapement between 1980 and 1999 (Table 1).

Harvest distribution and exploitation rate trends:

Assessment of exploitation rate trends for Snohomish summer/fall Chinook is difficult because there has been no coded-wire tagged indicator stock representing the management unit. Post-season runs of the FRAM model show a clearly declining trend in annual fishing year exploitation rate from 1983-2000, and fairly stable rates since 2000 (Figure 1, Table 2). These validation runs use the same projection model used in preseason planning, but use post-season estimates of spawning escapement, fishery harvest and non-catch mortality instead of preseason abundance and fishing level predictions. Thus, these runs adjust for observed abundances and fishing levels, but they assume the stock composition of fisheries is the same as the base period stock composition used in the FRAM model.

Figure 1. Adult equivalent fishery exploitation rates of Snohomish Chinook in Alaska/BC, preterminal Southern United States, and terminal fisheries from 1983-2008, as estimated by post-season FRAM runs.

Post-season FRAM (validation) estimates of the total ER for Snohomish Chinook were higher than pre-season estimates in five of eight years since 2001, with an average over-prediction of 2%. This difference is largely because post-season rates for northern fisheries (AK/BC) have been, on average
higher, than the pre-season projections. Pre-season projections of the SUS fishery ER have, on average, been similar to post-season estimates.

Table 2. Adult equivalent (AEQ) exploitation rates (ER) by fishing year for the Snohomish summer/fall Chinook management unit from post-season runs of the FRAM model for 1983-2008 (2009 revision of FRAM validation runs) and from pre-season FRAM model predictions for 1999-2008.

Year	Post-season			Pre-season		
	Alaska/BC	SUS	Total	Alaska/BC	SUS	Total
1983	68\%	30\%	98\%			
1984	28\%	47\%	75\%			
1985	31\%	32\%	63\%			
1986	28\%	35\%	63\%			
1987	22\%	32\%	53\%			
1988	21\%	40\%	61\%			
1989	19\%	32\%	50\%			
1990	22\%	28\%	50\%			
1991	23\%	30\%	53\%			
1992	26\%	37\%	64\%			
1993	24\%	37\%	61\%			
1994	21\%	31\%	52\%			
1995	17\%	50\%	67\%			
1996	10\%	40\%	49\%			
1997	7\%	21\%	29\%			39\%
1998	7\%	19\%	27\%			47\%
1999	15\%	22\%	36\%			33\%
2000	11\%	17\%	28\%			26\%
2001	14\%	16\%	30\%	8\%	15\%	23\%
2002	13\%	17\%	30\%	5\%	14\%	19\%
2003	12\%	12\%	24\%	6\%	14\%	20\%
2004	16\%	10\%	26\%	16\%	13\%	29\%
2005	23\%	13\%	36\%	18\%	15\%	33\%
2006	18\%	16\%	34\%	18\%	15\%	33\%
2007	14\%	19\%	33\%	22\%	13\%	35\%
2008	11\%	10\%	21\%	13\%	12\%	25\%

Table 3. Brood year exploitation rates reported in the Puget Sound Technical Recovery Team's Abundance and Productivity tables for the Skykomish and Snoqualmie Chinook populations.

Brood Year	Skykomish	Snoqualmie
$\mathbf{1 9 8 0}$	86%	86%
$\mathbf{1 9 8 1}$	88%	87%
$\mathbf{1 9 8 2}$	84%	77%
$\mathbf{1 9 8 3}$	68%	67%
$\mathbf{1 9 8 4}$	82%	83%
$\mathbf{1 9 8 5}$	75%	74%
$\mathbf{1 9 8 6}$	76%	74%
$\mathbf{1 9 8 7}$	70%	69%
$\mathbf{1 9 8 8}$	76%	78%
$\mathbf{1 9 8 9}$	74%	75%
$\mathbf{1 9 9 0}$	67%	59%
$\mathbf{1 9 9 1}$	54%	39%
$\mathbf{1 9 9 2}$	56%	61%
$\mathbf{1 9 9 3}$	61%	64%
$\mathbf{1 9 9 4}$	54%	54%
$\mathbf{1 9 9 5}$	46%	38%
$\mathbf{1 9 9 6}$	51%	44%
$\mathbf{1 9 9 7}$	46%	43%
$\mathbf{1 9 9 8}$	48%	46%

Management Objectives

Management objectives for Snohomish summer/fall Chinook include an upper limit on total exploitation rate, to insure that harvest does not impede the recovery of the component stocks, and a low abundance threshold (LAT) for spawning escapement to trigger reduced fishing effort under low returns to maintain the viability of the stocks. Fisheries will be managed to achieve a total adult equivalent exploitation rate, associated with all salmon fisheries, not to exceed 24 percent. These impacts include all mortalities related to fisheries, including direct take, incidental take, release mortality, and drop-off mortality.

Lacking direct information on the extent to which the current fisheries regime may disproportionately harvest any single stock, the spawning escapement of each stock will be carefully monitored for indications of differential harvest impact. Average escapement during the period of 1965 - 1976 will be the benchmark for this monitoring (Snohomish Basin Salmonid Recovery Technical Committee (SBSRTC) 1999).

The Puget Sound Salmon Management Plan mandates that fisheries will be managed to achieve maximum sustainable harvest (MSH) for all primary ${ }^{1}$ natural management units. The recovery exploitation rate is likely to be lower than the rate associated with MSH under current conditions of productivity, as in the case where recovery involves increasing the current level of productivity. The conservatism implied by the recovery exploitation rate imbues caution against the potential size and age selectivity of fisheries, and the effects of that selectivity on reproductive potential, and potential uncertainty and error in management.

LOW ABUNDANCE THRESHOLD FOR MANAGEMENT

A low abundance threshold of 2,800 spawners (natural origin, naturally spawning fish) for the Snohomish management unit is established (see estimation procedure below) as a reference for preseason harvest planning. If escapement is projected to fall below this threshold under a proposed fishing regime, extraordinary measures will be adopted to minimize harvest mortality. Directed harvest of Snohomish natural origin Chinook stocks, (net and sport fisheries in the Snohomish terminal area or in the river) has already been eliminated. Further constraint, thus, depends on measures that reduce incidental take.

The low abundance threshold for the management unit was derived from critical escapement thresholds for each of the Snoqualmie, and Skykomish populations in a two-step process. Critical escapement thresholds are levels that we don't want to go below under any circumstances. For each population, the critical escapement threshold was determined and then expanded to an adjusted level for management use according to the following formula:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{man}, \mathrm{p}}=\mathrm{E}_{\mathrm{crit,p}} /\left[(\mathrm{R} / \mathrm{S})_{\mathrm{low}, \mathrm{p}} *\left(1-\mathrm{RER}_{\mathrm{mu}}\right)\right] \tag{1}
\end{equation*}
$$

Where $\mathrm{E}_{\text {man,p }}$ is the lower management threshold for population \boldsymbol{p};
$\mathrm{E}_{\text {crit,p }}$ is the critical threshold for population \boldsymbol{p};
$\mathrm{R} / \mathrm{S}_{\text {low,p}}$ is the average of recruits/spawner for population \boldsymbol{p} under low
survival conditions; and
$R E R_{m u}$ is the RER established for the management unit
The following describes the $\boldsymbol{E}_{\boldsymbol{m a n}, \boldsymbol{p}}$ for the Snoqualmie and Skykomish stocks within the Snohomish management unit. The following analysis is based on estimates of natural spawning escapement to the Snohomish system, by population, for the most recent twelve years (Table 1) .

[^4]
Maximum Exploitation Rate Guideline

INTRODUCTION

The rebuilding exploitation rate (RER) is the highest allowable ("ceiling") exploitation rate for a population under recovery given current habitat conditions, which define the current productivity and capacity of the population. This rate is designed to meet the objective that, compared to a hypothetical situation of zero harvest impact, the impact of harvest under this plan will not significantly impede the opportunity for the population to grow towards the recovery goal. Since recovery will require changes to harvest, hatchery, and habitat management and since this plan only addresses harvest management, we cannot directly evaluate the likelihood of this plan's achieving its objective. Therefore, we evaluate the RER based on Monte Carlo projections of the near-term future performance of the population under current productivity conditions, in other words, assuming that hatchery and habitat management remain as they are now and that survival from environmental effects remain as they are now.

We choose the RER such that the population is unlikely to fall below a critical threshhold ${ }^{2}$ (CT) and likely to grow to or above a rebuilding escapement threshold (RET). The CT is chosen as the smallest previously-observed escapement from which there was a greater than 1:1 return per spawner, while the RET is chosen as the smallest escapement level such that the addition of one additional spawner would be expected to produce less than one additional future recruit under current conditions of productivity. This level is also known as the maximum sustainable harvest (MSH) escapement. It is extremely important to recognize, though, that under this plan the RET is not an escapement goal but rather a level that is expected to be exceeded most of the time. It is also the case that, when the productivity conditions for the population improve due to recovery actions, the RET will usually increase (MSH escapement does not increase in the Hockey stick model if productivity and capacity increase together as in eq. 5) and the probability of exceeding the RET using the RER computed for current conditions will also increase over the probability computed under current conditions. Thus the RET serves as a proxy for the true goal of the plan, which can only be evaluated once we have information on likely future conditions of habitat that will result from recovery actions, and hatchery as well as harvest management.

It also follows from the above, given that the likely chance of achieving the RET is greater than 50%, that the actual harvest from the population under this plan will be less than the maximum sustainable harvest, the amount less being dependent on the likelihood (\%) of achieving the RET. All sources of fishing-related mortality are included in the assessment of harvest, and nearly 100% of the fishing-related mortality will be due to non-retention or incidental mortality; only a very small fraction is due to directed fishing on Snohomish populations.

[^5]There are two phases to the process of determining an RER for a population. The first, or model fitting phase, involves using recent data from the target population itself, or a representative indicator population, to fit a spawner-recruit relationship representing the performance of the population under current conditions. Population performance is modeled as

$$
\mathrm{R}=f(\mathrm{~S}, \mathbf{e}),
$$

where S is the number of fish spawning in a single return year, R is the number of adult equivalent recruits ${ }^{3}$, and \mathbf{e} is a vector of environmental, density-independent correlates of annual survival. The purpose of this phase is to be able to predict the recruits from spawners and environmental covariates into the future. What is important here is to simulate a pattern of returns into the future, not predict returns for specific years.

Several data sources are necessary for this analysis: a time series of natural spawning escapement, a time series of total recruitment (obtained from run reconstruction based on harvest and escapement data), age distributions for both of these, and time series for the environmental correlates of survival. In addition, one must assume a functional form for f, the spawner-recruit relationship; in our case three different forms were examined. Given the data, one can numerically estimate the parameters of the assumed spawner-recruit relationship to complete the model fitting phase.

The second, or projection phase, of the analysis involves using the fitted model in a Monte Carlo simulation to predict the probability distribution of the near-term future performance of the population assuming that current conditions of productivity continue. Besides the fitted values of the parameters of the spawner-recruit relationships, one needs estimates of the probability distributions of the variables driving the population dynamics, including the process error (including first order autocorrelation) of the spawner-recruit relationship itself and each of the environmental correlates. Also, since fishing-related mortality is modeled in the projection phase, one must estimate the distribution of the deviation of actual fishing-related mortality from the intended ceiling. This is termed "management error" and its distribution, as well as the others are estimated from available recent data.

We used the viability and risk assessment procedure (VRAP, N J Sands, in prep.) for the projection phase. For each trial RER value, the population is repeatedly projected for 25 years. From the simulation results we computed the fraction of years in all runs where the escapement is less than the LAT and the fraction of runs for which the final year's escapement (average of last 3 years) is greater than the UAT. Trial RERs for which the first fraction is less than 5% and the second fraction

[^6]is greater than 80% are considered acceptable for use as ceiling exploitation rates for management under this plan.

MODEL FITTING PHASE

General

The model used to estimate the spawner recruit parameters uses fishing rate and maturation rate estimates along with the spawning estimates to determine the time series of total recruitment needed.

Preterminal Fishery Rates

Fishery rates were based on an aggregate of Puget Sound summer/fall Chinook hatchery indicator stock populations (Stillaguamish, Green, Grovers, George Adams, Nisqually, Samish). Although a new indicator stock tagging program has been implemented to represent Skykomish wild Chinook, there is currently no coded-wire-tag (CWT) recovery data available that is directly representative of the Snohomish populations and no direct measure of fishery exploitation on the wild populations. We evaluated two options for estimating fishery rates on the Snohomish populations: 1) an aggregate of Puget Sound summer/fall Chinook hatchery coded-wire-tag (CWT) indicator stocks using the Pacific Salmon Commission Chinook Technical Committee (CTC) exploitation rate indicator stock analysis (CTC 1999 for method, Dell Simmons pers. Comm. for most recent data); and 2) estimates from the CTC Chinook model (CTC 1999).

Option 1 relies on CWT recoveries from individual years to reconstruct the fishery rates for that year, but is dependent on a consistently high rate of catch and escapement sampling to make precise estimates. After further evaluation, we determined that catch and escapement sampling for most of the populations within the aggregate meet or exceed their target sampling rates in most years. Snohomish populations may not have the same distribution as the populations within the aggregate. Puget Sound summer/fall Chinook populations show some similarity in the general trend over time of exploitation in preterminal fisheries. Although it is logical to assume that Snohomish summer/fall populations follow a similar trend with respect to the change over time in the rate of preterminal exploitation, concern remains that the aggregate Puget Sound indicator stocks may not accurately reflect the true exploitation rates of Snohomish populations. Also, the indicator stocks that comprise the aggregate are not likely to represent harvest patterns of yearling outmigrant or "stream type" (Healey 1991). Scale pattern analysis of Snohomish Chinook shows that a significant portion of the return is stream type from both fingerling and yearling populations.

Under Option 2, the CTC model uses CWT recoveries from the Stillaguamish indicator stock during the 1979-1982 base period to estimate fishery exploitation on the Snohomish population in subsequent years so estimates are less subject to year-year variability in sampling rates. The CTC model appears to best reflect the pattern of reduced overall exploitation they expected to see in the
early 1990's in response to more restrictive fishing regimes. Again, it is possible that the distribution and exploitation of the Stillaguamish and Snohomish populations are different.

We chose Option 1 because we determined that, for the purposes of deriving an RER, year specific fishery rates would be better than estimates derived from a base period based on a limited number of Stillaguamish CWT recoveries. Option 1, by using an aggregate set of populations, maximizes the use of the available data and smoothes differences in any one year associated with a particular population. Also, we were able to address most of the concerns we had with Option 1. In addition, Therefore, the aggregate was used as a surrogate to represent the Snohomish populations in preterminal fisheries. Fishery rates were derived from the CTC CWT exploitation rate analysis for each population in the aggregate and averaged across all populations for each year for which data were available.

The average CTC CWT exploitation rate analysis for fall indicator stocks by age was used for brood year 1979 to 1994, ages 2-4 for brood year 1995 and ages 2-3 for brood year 1996. The 1995 age $5+$ fishery rate was based on an average of the 1993-94 rates. The 1996 ages 4-5+ were based on an average of the 1994-1995 rates because the current CTC CWT exploitation rate analysis is not complete for these ages for these brood years. However, available data for ages 2 and 3 indicate fishery rates were similar in 1994-1996. Fishery rates will continue to be updated as data become available.

Terminal Fishery Rates

Terminal area fisheries include mature Chinook harvested in net fisheries throughout Puget Sound and in recreational fisheries in the Snohomish River system and Area 8D. The in-river recreational fishery harvest is partitioned into natural and hatchery-produced components based on the relative magnitudes of the escapement to natural areas and to the Wallace River Hatchery.

The stock composition of the Area 8D recreational and net harvest is estimated using results of recoveries of thermally-marked otoliths from Tulalip hatchery. The otolith recoveries are used to estimate the Tulalip hatchery contribution to this fishery for the brood years from 1997 on (Rawson et al. 2001), which is subtracted from the total catch. The remaining catch is partitioned into components based upon the relative run strengths of the Stillaguamish and Snohomish Chinook returns to their rivers. In particular, the Snohomish natural fraction is estimated as the Snohomish natural escapement plus the Snohomish natural portion of the in-river recreational harvest divided by the sum of the escapements to the Stillaguamish and Snohomish Rivers and the in-river harvests of Chinook in those rivers. For years before 1997 the procedure is the same, except that the proportional contribution of Tulalip hatchery fish to Area 8D is assumed to be the average of the values measured for 1997-2001.

The stock composition of the Area 8A net harvest is estimated using the relative proportions of all the Stillaguamish/Snohomish stocks passing through Area 8A. Only Chinook harvested during the
so-called "adult accounting period" of July1 through September 30 are included in this analysis. Other Chinook harvested in Area 8A are part of the preterminal fishing rate. In particular, the Snohomish natural fraction is the sum of the Snohomish natural escapement, the Snohomish natural fraction of the in-river harvest, and the Snohomish natural fraction of the 8D harvest, divided by the sum of the total escapement and harvest in both rivers plus the Area 8D harvest and escapement to Tulalip hatchery.

To the three harvest components computed above (in-river, 8D, and 8A) the harvest of mature Snohomish natural Chinook in Puget Sound net fisheries outside of Area 8A must be added. This computation was completed using coded-wire tag recoveries by Jim Scott and Dell Simmons of the CTC. The terminal, or mature fishery, fishing rate is then the sum of the harvest in the four components divided by the numerator plus the Snohomish natural escapement.

Maturation Rates

We also considered two options for the maturation rates (the fraction of each cohort that leaves the ocean to return to spawn during the year): 1) maturation rates derived from age data collected from scales and otoliths from the spawning grounds combined with the age-specific fishing rates described above; 2) estimates derived from the CTC model for the Snohomish model population. In general, fish matured at older ages under option 1 than option 2, and no fish matured as two year olds. We decided to use option 1 because it is a more direct measure of the age structure of the spawners and relies on age specific data for the populations.

However, we identified two potential concerns that should be taken into account when using the data: 1) age 2 fish are generally underrepresented in spawning ground samples for several reasons: e.g., carcasses decay faster, the smaller body size makes them more susceptible to being washed downstream, they are less visible to samplers; and 2) only one year, 1989, had a sufficient number of samples to use. The age structure for other years was extrapolated from 1989 by using the 1989 age composition to reconstruct brood year and calendar year escapements by age. The age structure is then adjusted to minimize the difference between the estimated calendar year escapements and the observed calendar year escapements for each year for which data are not available.

Hatchery Effectiveness

No adjustments were made for the relative fecundity of naturally-spawning hatchery-produced fish as compared with natural-origin fish, since there is no available data for the effectiveness of hatchery spawners in the wild when compared with their natural origin counterparts for Puget Sound Chinook. For the RER analysis, we assumed all spawners were equally fecund regardless of their origin. This is a conservative assumption since it would tend to underestimate productivity (assuming hatchery fish are less effective) and, therefore, the resulting RER, minimizing the possibility of adopting a harvest objective that was too high (Table 4.)

Table 4. Intrinsic Productivity (MSY Exploitation Rate) by Production Function for the Skykomish Chinook population.

Hatchery Effectiveness	Ricker	Beverton-Holt	Hockey Stick
Not Effective	$7.58(49 \%)$	$14.14(65 \%)$	$8.07(77 \%)$
Half as Effective	$6.26(52 \%)$	$8.34(65 \%)$	$4.55(63 \%)$
Equal Effectiveness	$5.49(47 \%)$	$6.51(53 \%)$	$3.66(51 \%)$

Spawner-recruit Models

The data were fitted using three different models for the spawner recruit relationship: the Ricker (Ricker 1975), Beverton-Holt (Ricker 1975), and hockey stick (Barrowman and Myers 2000). The simple forms of these models were augmented by the inclusion of environmental variables correlated with brood year survival. For marine survival we used an index based on the common signal from a several Chinook coded-wire tag groups released from Puget Sound hatcheries (J Scott, Washington Department of Fish and Wildlife, personal communication). We tried two indices: one (PS6) used tag groups from throughout Puget Sound; the other (NPS2) used coded wire tags from North Puget Sound hatcheries only. The other environmental correlate, associated with survival during the period of freshwater residency, was the September-March peak daily mean stream flow during the fall and winter of spawning and incubation.

Equations for the three models are as follows:

$$
\begin{array}{ll}
\left(\mathbf{R}=\mathbf{a S e} \mathrm{e}^{-\mathbf{b S}}\right)\left(\mathbf{M}^{\mathbf{c}} \mathrm{e}^{\mathrm{dF}}\right) & {[\text { Ricker }]} \\
(\mathbf{R}=\mathbf{S} /[\mathbf{b S}+\mathbf{a}])\left(\mathbf{M}^{\mathbf{c}} \mathrm{e}^{\mathbf{d F}}\right) & {[\text { Beverton-Holt }]} \\
(\mathbf{R}=\min [\mathbf{a S}, \mathbf{b}])\left(\mathbf{M}^{\mathbf{c}} \mathrm{e}^{\mathrm{dF}}\right) & {[\text { hockey stick }]}
\end{array}
$$

In the above, a is the density independent parameter, b is the density dependent parameter, c is the parameter for marine survival, d is the parameter for the freshwater covariate, M is the index of marine survival, and F is the freshwater correlate, peak Sep-Mar mean daily flow in this case.

Data used for the Skykomish Population

The Skykomish RER was based on analyses of the 1979-1996 brood years. Uncertainty about accuracy of escapement data and completeness of catch data precluded use of data before 1979. The 1996 brood year was the last year for which data were available to conduct a complete cohort reconstruction. There was no evidence of depensation or of a time trend in the data after adjustment for environmental variables.

Results

The results of model fitting for various combinations of environmental correlates are summarized in Table 7 and graphed in Figure 1. We used the parameters from the fits using the NPS2 marine survival index and using both the marine and freshwater environmental correlates (upper right corner of Table 7).

Figure 1. Comparison of observed and predicted recruitment numbers for the Skykomish Chinook population, brood years 1979 - 1996, under three different models of the spawner-recruit relationship (see text for further details).

PROJECTION PHASE

We projected the performance of the Skykomish stock at exploitation rates in the range of 0 to .30 at intervals of .01 using the fitted values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d for the three spawner-recruit models. All projections were made assuming low marine survival using the average and variance of the marine survival indices observed for the most recent 10-year period. The freshwater environmental correlate (peak winter flow) was projected using the average and variance observed for the entire period used in the model fitting phase. Projections were run for target exploitation rates varying from 0 to .50 , in increments of .01 . The lower abundance threshold (LAT) was 1,745 , derived as described above. The upper abundance threshold was the MSH escapement level (also described above). This biological reference point varies with the assumed marine survival and also with the particular form of the spawner-recruit relationship. We used the average marine survival index for the low marine survival period to obtain the RET for each spawner-recruit function. These values were: 3,500 - Ricker, 3,600 - Beverton-Holt, and 3,600 - hockey stick.

For each combination of spawner-recruit relationship and exploitation rate we ran 1000 25-year projections. Estimated probabilities of exceeding the RET were based on the number of simulations for which the final spawning escapement exceeded the RET. Estimated probabilities of falling below the LAT were based on the number of years (out of the total of 25,000 individual years projected for each combination) that the spawning escapement fell below the LAT. For each spawner-recruit relationship the sequence of Monte Carlo projection running through the exploitation rate range from 0 to .30 started with the same random number seed so that the results for the different spawner-recruit models would be comparable.

Detailed results of these projections are in Table 8, and summarized results are in Table 5. Indicated target exploitation rates are 0.25 - Ricker, 0.27 - Beverton-Holt, and 0.22 - hockey stick. Since there is no basis to choose one of these models over the other, we propose to use the average of these values as the target exploitation rate. This average is 0.24 , rounding down to the nearest whole percentage exploitation rate.

Table 5. Results of the VRAP projections of the Skykomish Chinook stock under current conditions showing the indicated target exploitation rate for each form of the spawnerrecruit relationship.

Model	TgtER	\#fish Mort.	\%runs extnct	\%yrs <LEL	\%runs end>UEL	1st Year	LastYrs Ave.
Ricker	0.25	1671	0	4.0	80.0	2123	5711
Bev-Holt	0.27	1889	0	4.5	80.3	2084	6149
H-Stick	0.22	1427	0	3.0	81.3	2172	5747

MANAGEMENT UNIT REBUILDING EXPLOITATION RATE AND LOWER ESCAPEMENT THRESHHOLDS

The management unit maximum exploitation rate was set at 0.24 , which is the average of the maximum allowable rates computed for the Skykomish stock using the three different spawnerrecruit relationships. This is assumed to provide the appropriate protection to both populations. It was not possible to obtain a fit of the Snoqualmie data to any of the spawner-recruit models, with or without the use of environmental correlates. It is believed that this is due to the fact that some of the escapement estimates for the Snoqualmie are unreliable, and biased low, due to poor visibility in some years.

The lower abundance threshold for management was set starting with critical escapement levels, expands these per population management thresholds, and expands again to a management unit threshold based on the average contribution of each population to the management unit's escapement.

The second step in deriving the management unit lower threshold was to expand each stock's lower management threshold by dividing the percentage of the total escapement that the stock is expected to comprise.

We can then compute the total system escapement required such that we expect each stock to achieve its lower escapement management threshold by dividing the percentage of the total escapement the stock is expected to comprise. The expected percentages of each stock came from the recent 12 -year escapement breakout by stock (Table 1). Averaging the ratios of the two stocks' estimated NOR escapements over the twelve years gives an average Snoqualmie fraction of 37.7\% of the total.

Table 6. Derivation of the lower management threshold for each Snohomish Chinook population and the management unit escapement necessary to achieve this level for each population.

	Snoqualmie	Skykomish
Critical level	400	942
Low R/S	1.01	0.71
Exp. rate	.24	.24
Low threshold	521	1745
Implied MU LT	1,381	2,802

The maximum of the management unit lower thresholds required to achieve the lower thresholds for the two stocks is 2,800 (Table 6), which was chosen as the management unit lower threshold for management planning purposes. Because this is so much higher than the indicated management threshold for protection of Snoqualmie escapement, this plan is providing extra protection to the Snoqualmie stock pending acquisition of better escapement data.

INTERPRETATION OF FRAM MODEL FOR PRESEASON PLANNING

Currently the comanagers use the Fishery Regulation Assessment Model (FRAM) for preseason planning of total fishery impacts (Table 2). Because a different set of exploitation rates (Table 3) was used in the model fitting phase for Snohomish Chinook, it is important to assess whether preseason exploitation rates from FRAM are directly comparable with the RER derived in the projection phase described above.

The exploitation rates in Tables 2 and 3 cannot be directly compared for a number of reasons. First, the A\&P rates (Table 3) are brood year rates, while the FRAM rates (Table 2) are calendar or fishing year rates. FRAM is based on applying current year abundances and fishery exploitation levels to average fishery-specific exploitation rates observed form coded-wire tag recoveries in a base period (Larrie Lavoy, WDFW, personal communication). In contrast the preterminal rates in the A\&P tables use current year coded-wire tag recoveries from indicator groups.

Second, FRAM more accurately represents Snohomish Chinook by modeling both the fingerling outmigrant or "ocean type" and yearling outmigrant or "stream type" (Healey 1991) components of the Snohomish run. Comparison of coded-wire tag recoveries from hatchery groups released as age0 fingerlings as compared with groups released as age-1 yearlings consistently shows differences in patterns of fishery exploitation. FRAM utilizes CWT recovery information from Wallace River (Skykomish) yearling production releases as well as fingerling CWT data to accurately reflect Snohomish Chinook distributions (Larrie LaVoy, WDFW, personal communication). Because yearling recovery data are not incorporated into the A\&P tables, these rates may not be an accurate reflection of the true rates for Snohomish Chinook.

Finally, the two models use different set of indicator coded-wire tag groups to represent the Snohomish management unit. This is more difficulty for the Snohomish than for other management units because there is no local indicator coded-wire tag stock available for Snohomish ocean type Chinook, although a program of double-index tagging at Wallace River hatchery began in 2000 with hopes of developing an appropriate indicator group.

In summary, information available at this time indicates that there is some management risk to using FRAM as we implement annual fishing plans with the intention of achieving our management plan objectives. However, given the uncertainties in estimates associated with estimates of exploitation rates in both the A\&P tables and with FRAM, it is not clear that one is more accurate in representing true Snohomish Chinook exploitation rates. Because some additional precaution is called for in using FRAM to assess whether a given package of proposed fisheries will result in an exploitation rate below the RER guideline of 0.24 for the Snohomish, the comanagers will implement an ER ceiling of 0.21 instead of the 0.24 derived in the projection phase of this analysis. This guideline was the highest rate derived from supplemental preseason model runs for the management years 2000-2003. Spawning escapements exhibit an increasing trend (Table 1), exceeding the UMTs for the two populations in most years since 2000, demonstrating that recent management has met the objective of reducing fishery impacts so that the population can recover if other factors improve.

Data gaps

Priorities for filling data gaps to improve understanding of stock / recruit functions, harvest exploitation rate, and marine survival:

- Annual implementation of a double-index coded-wire tagging program using fingerling summer Chinook from Wallace River Hatchery to enable direct assessment of harvest distribution, and estimation of harvest exploitation rates and marine survival rates. (Initiated beginning with the 2000 brood year).
- Estimates of natural-origin smolt abundance from Chinook production areas. (Outmigrant trapping began in the Skykomish in 2000 in the Snoqualmie in 2001).
- Estimates of estuarine and early-marine survival for fingerling and yearling smolts.
- Quantification of the contribution of hatchery-origin adults to natural spawning for each stock. (Research is underway. Estimates of hatchery contribution to natural spawning populations is available for the 1997 through 2001 return years.)

Table 7. Results of model fits for different combinations of environmental correlates.

	PS(6) for marine, FW		
	Ric	Bev	Hoc
a - productivity	4.1658	0.2400	4.1658
b - Spawners	0.000000	0.000000	42,216
c - Marine	0.8330	0.8330	0.8330
d - Freshwater	-0.000011	-0.000011	-0.000011
SSE	2.414	2.414	2.414
MSE (esc)	0.268	0.268	0.268
autocorrelation in error	0.199	0.199	0.199
R	0.680	0.680	0.680
F	2.579	2.579	2.579
PROBABLITIY	0.1184	0.1184	0.1184
MSE (reruits)	0.564	0.564	0.564
autocorrelation in error	-0.390	-0.390	-0.390
Ave.Pred. Error	7237	7237	7237

	Ric	BeV	Hoc
a - productivity	2.8789	0.3474	2.8789
b - Spawners	0.000000	0.000000	42,216
c - Marine	0.8398	0.8398	0.8398
d - Freshwater	0.000000	0.000000	0.000000
SSE	2.897	2.897	2.897
MSE (esc)	0.290	0.290	0.290
autocorrelation in error	0.203	0.203	0.203
R	0.617	0.617	0.617
F	3.066	3.066	3.066
PROBABLITIY	0.0915	0.0915	0.0915
MSE (reruits)	0.447	0.447	0.447
autocorrelation in error	-0.372	-0.372	-0.372
Ave.Pred. Error	7773	7773	7773

No Freshwater, NPS(2)

Ric	Bev	Hoc
4.6677	0.0761	3.9737
0.000254	0.000132	6,238
0.6986	0.7042	0.7341
0.000000	0.000000	0.000000
1.056	1.057	1.065
0.106	0.106	0.106
0.175	0.141	0.116
0.862	0.855	0.877
14.505	13.605	16.739
0.0011	0.0014	0.0006
0.298	0.304	0.316
-0.071	-0.088	-0.069
4310	4437	4089

No Marine or Freshwater

Ric	Bev	Hoc
2.7118	0.3688	2.7118
0.000000	0.000000	66,517
0.5000	0.5000	0.5000
-0.000001	-0.000001	-0.000001
3.758	3.758	3.758
0.342	0.342	0.342
-0.017	-0.017	-0.017
0.299	0.299	0.299
1.076	1.076	1.076
0.3219	0.3219	0.3219
0.789	0.789	0.789
-0.369	-0.369	-0.369
7938	7938	7938

Table 8. Summary of projections of the Skykomish population at different target exploitation rates for three different forms of the spawner-recruit relationship.

Target ER	$\operatorname{Pr}($ final esc $>$ UAT) $\%$			Pr (ann. Esc. < LAT) \%		
	B-H	Ricker	Hockey-St	B-H	Ricker	Hockey-St
0.00	99.20	96.60	96.30	0.30	0.50	0.50
0.01	99.40	97.80	96.50	0.40	0.70	0.60
0.02	99.00	96.40	95.80	0.50	0.70	0.60
0.03	98.70	95.80	95.60	0.40	0.60	0.50
0.04	98.10	95.60	94.70	0.40	0.70	0.60
0.05	98.40	96.40	95.80	0.50	0.70	0.70
0.06	97.80	95.10	94.30	0.60	0.90	0.80
0.07	97.40	94.70	93.20	0.60	0.90	0.80
0.08	97.80	94.90	94.00	0.60	0.90	0.80
0.09	97.50	94.80	93.70	0.70	1.00	1.00
0.10	97.40	94.20	92.70	0.70	1.00	1.00
0.11	96.90	94.10	92.20	0.90	1.20	1.10
0.12	95.70	92.10	90.50	0.80	1.20	1.20
0.13	96.50	93.40	90.70	1.20	1.60	1.60
0.14	96.00	92.10	90.30	1.10	1.40	1.40
0.15	95.60	90.40	89.30	1.20	1.50	1.60
0.16	93.60	90.90	88.20	1.60	2.00	2.00
0.17	93.70	89.80	87.00	1.50	1.80	2.00
0.18	91.40	87.90	84.60	1.60	1.90	2.10
0.19	91.10	87.70	83.80	2.10	2.50	2.80
0.20	91.00	86.90	83.90	1.90	2.30	2.60
0.21	91.00	87.90	84.40	2.10	2.40	2.80
0.22	90.70	87.30	82.50	2.30	2.70	3.00
0.23	86.40	82.70	78.70	2.80	3.20	3.70
0.24	86.40	82.30	77.10	3.40	3.70	4.40
0.25	84.30	80.00	75.30	3.50	4.00	4.80
0.26	85.80	82.40	76.90	3.30	3.90	4.70
0.27	80.30	77.10	71.50	4.50	4.90	6.10
0.28	77.90	73.90	68.70	4.50	5.00	6.30
0.29	78.40	73.90	65.80	5.10	5.60	7.20
0.30	75.20	72.00	65.60	5.20	5.60	7.50

Lake Washington Management Unit Status Profile

Component Populations

Cedar River Fall
Sammamish River Fall

Geographic distribution

Fall Chinook primarily spawn in two sub-basins in the Lake Washington watershed: the Cedar River sub-basin located at the south end of Lake Washington and the Sammamish River sub-basin which drains into the north end of Lake Washington.

Cedar River Chinook

Before construction of the City of Seattle's Landsburg Dam in 1901, Chinook spawning access in the Cedar River extended to Cedar Falls at RM 34.5. From 1901 until 2003, spawning access was restricted to the Cedar River below the dam at RM 22.6. In 2003, fish passage facilities were completed at the dam. The vast majority of spawning occurs in the mainstem Cedar River upstream of RM 5.0. Reaches surveyed for Cedar River Chinook spawners are RM 22.6 to RM 0.0 and from RM 34.5 to RM 22.6.

Sammamish River Chinook

Most Sammamish River Chinook spawn in Bear and Issaquah creeks, the two largest tributary streams within the sub-basin. No Chinook spawning occurs within the Sammamish River mainstem.

Approximately 10 of the 12.4 miles of Bear Creek are accessible to Chinook, although most spawning occurs between RM 4.25 and 8.75 . A tributary to Bear Creek, Cottage Lake Creek is three miles long and is also utilized. Spawning in Issaquah Creek occurs predominately in the reach between RM 1.0 and the Issaquah Hatchery at RM 3.2.

Sammamish River spawning surveys are conducted in the following reaches: RM 1.3-8.8 in Bear Creek, RM 0.0 - 3.0 in Cottage Lake Creek and RM 0.0 to RM 3.2 in Issaquah Creek.

Life History Traits

Juvenile trapping in the Cedar River indicates that the outmigration is bimodal with most of the fish entering the lake prior to April as fry. A smaller percentage of these fish rear in the river to smolt size and outmigrate between May and July. On average, 75% of the migrants are fry. These fry rear
along the lakeshore, grow quickly, and leave the lake as zero-age smolts. Juvenile trapping in Bear Creek indicates that most Chinook migrants leave the creek as zero-age smolts.

Smolt outmigration through the Chittenden Locks begins in mid-May and continues until at least September. Recent PIT tagging of Cedar River Chinook suggests that the Cedar River fish migrate out later in the season than basin hatchery Chinook. Lake Washington Chinook stocks have a protracted smolt outmigration, with a large percentage of the run outmigrating after July 1.

Adult Chinook enter the Lake Washington basin from late May through September, and enter tributaries from mid-August through early November. Spawning is usually complete by midNovember.

Hatchery Contribution

Hatchery production in the Lake Washington basin currently occurs at the Issaquah Creek Hatchery (Chinook and coho), the University of Washington (UW) Hatchery (Chinook and coho), and the Cedar River Interim Sockeye Facility (sockeye). The Issaquah Hatchery, in operation since 1936, releases approximately two million sub-yearling Chinook smolts annually. The UW hatchery, which began roughly a decade later, releases about 200,000 sub-yearling Chinook annually.

The first recorded plants of juvenile Chinook into the Lake Washington basin occurred in 1901, and intermittent plants continued for decades. Beginning in 1952 when standardized records began, Chinook have been periodically released into many of the tributaries in the basin, primarily from Issaquah Creek and Green River hatchery production. It is noteworthy that the hatchery stocks at Issaquah Creek Hatchery and the UW Hatchery were both principally derived originally from Green River hatchery stock. Since 1994, the Issaquah hatchery has used local broodstock from Issaquah Creek exclusively.

Freshwater run reconstruction has shown that approximately 85% of adult Chinook returning to the Lake Washington basin are hatchery origin fish. All age classes of returning hatchery adults since 2004 were from hatchery releases that were almost entirely marked with adipose-clipped fins. Because of this, recent Lake Washington basin spawning surveys have been able to detect most hatchery fish spawning naturally. The percentage of hatchery fish on the spawning grounds varies across the basin. Results are shown in Table 1.

Estimates of hatchery and natural contribution for Issaquah Creek are derived from sampling at the hatchery rack. An assumption that the hatchery contribution at the rack is the same as the contribution in Issaquah Creek was confirmed in 2007 by extensive carcass sampling in the creek. These estimates are conservative since juvenile hatchery Chinook mark rates are less than 100%. The estimates for mark rate in Bear Creek assume that the natural production from Issaquah Creek contributes unmarked spawners to Bear Creek in the same proportion as that in Issaquah Creek.

Table 1. Hatchery mark rates (ad-clips) in hatchery and natural spawners in the Lake Washington Basin. (Note: 5 yr-old returns were not marked in 2003).

Location	Return year					
	2003	2004	2005	2006	2007	2008
Issaquah Creek		90.5%	92.4%	94.2%	94.2%	
Bear Creek	54.0%	63.0%	78.9%	77.7%	75.0%	
Cedar River	24.1%	35.6%	31.5%	20.3%	14.8%	10.0%

Genetic Information

A comprehensive review of the available genetic data from naturally-spawning and hatchery Chinook in the Lake Washington watershed by WDFW found no evidence to support a conclusion that the naturally-spawning aggregations of Chinook in the Lake Washington basin are anything other than a single genetic population. This does not prove that they are a single genetic population; only that there are not sufficient data to show otherwise (Warheit and Bettles, 2005).

The TRT concluded that the spatial separation provided moderate support for the designation of separate independent populations in the Sammamish and Cedar sub-basins. This qualified conclusion was based on the view that genetic differentiation between the two sub-basins is most likely influenced by extensive use of Green River-origin hatchery fish in the Sammamish River (Ruckelshaus et al., 2006).

Status

Standardization of Cedar River Escapement Goal

In the past, harvest management plans for Lake Washington Chinook were formulated with consideration of a fixed spawning escapement goal for Cedar River Chinook. The updated management objectives that are set forth in this document provide for a more appropriate escapement objective in light of new information and uncertainties that exist about optimal production levels, while still incorporating aspects of the former objective.

An interim escapement goal for the Cedar River was set in 1993 at 1,200 Chinook for an index reach based on average escapements observed in years 1965-1969. Estimates of spawner abundance in the reach were based on fish counts applying the area-under-the-curve (AUC) method.

In more recent years, estimates of spawner abundance have also been made using redd counts (e.g., Burton et al. 2006) performed over the entirety of the spawning area downstream of Landsburg Dam. These data have been used to convert previous estimates of escapement within the index reach to estimates of spawner abundance (as would be derived through redd counts) for the entirety of the
river (below the dam) using simple linear regression. Using this regression, the goal of 1,200 fish in the index reach can be converted to 1,680 Chinook for the entirety of the river downstream of the dam. This number (1680) reflects a redd-based escapement value consistent with the interim escapement goal derived using AUC methodology.

In 2003, a new fish ladder allowed Chinook to pass above Landsburg Dam, complicating consideration of an appropriate escapement goal for the entire sub-basin.

While a spawning level of 1,680 fish for the river provides a useful benchmark, insufficient data exist to more appropriately define the production characteristics of the river. The escapement goal is an interim value based on the Cedar River as it existed in the late 1960s. Since that time, the habitat below Landsburg Dam has degraded from development, while passage above the dam has been created. Benefits afforded by recent habitat restoration need to be quantified. Both the productivity and capacity of the Cedar need to be re-evaluated in light of these changes.

Abundance Trends

The status of Chinook stocks in the 2002 Salmonid Stock Inventory was reported as "Depressed" for the Cedar population and "Healthy" for the Sammamish population components. Estimated abundance at various points within the Lake Washington beginning in 2000 is shown in Table 2. Patterns of abundance of the Cedar River Chinook population show an upward trend in recent years (Figure 1). The estimated total number of spawners in the Cedar River was relatively at a high level in the 1970s and 1980s, then dropped to much lower levels in the mid 1990s, but has recently been trending upward.

Numbers of natural spawners (hatchery origin plus natural origin spawners) estimated in the Sammamish River sub-basin are shown in Table 2. Inter-annual variation is quite high in the data sets. The estimates shown for total Sammamish natural spawners consist of the Bear and Issaquah creek spawning escapements for the reaches described above.

It is noteworthy that the numbers of spawners estimated in Bear Creek show no statistical relationship to the size of the Sammamish River run (Figure 2). Most of the spawners ($>75 \%$ in recent years) in Bear Creek are hatchery strays. Mechanisms influencing the number of spawners that move into this tributary may be related to inter-annual variation in one or more environmental factors, such as temperature and flow. Further investigation is needed to understand the factors that regulate spawner abundance within Bear Creek.

Uncertain Historical Presence of Sammamish Population

Uncertainty exists about the historical presence of a Chinook population in the Sammamish River sub-basin. The TRT concluded that one did exist (Ruckelshaus et al. 2006), although they have acknowledged that there is uncertainty about this (e.g., RITT 2008). There is apparently no clear documentation that Chinook were consistently produced in the Sammamish sub-basin prior to the advent of hatcheries. The TRT's conclusion was given as:
"Although the current Sammamish River population is largely supported by naturally spawning hatchery fish, the basin area suggests it had the capacity to support a self-sustaining, independent population. The cumulative catchment area of tributaries draining into the Sammamish River and from Swamp, North, Bear, Little Bear, and Issaquah creeks is more than 60,000 ha, which is larger than the smallest watershed containing an independent population in the TRT's analyses (the South Fork Nooksack River). " (Ruckelshaus et al. 2006)

If a population did exist historically in the Sammamish sub-basin, that population is now considered to be extinct. The TRT stated that:
"The history of hatchery releases in the Sammamish River raises two key uncertainties. First, although the TRT identified an historical population associated with this river, the Chinook salmon that currently use the watershed likely do not represent the historical population. This population is believed to be genetically extinct because of many factors for decline, including an extensive history of introductions of Green River-origin hatchery fish. " (Ruckelshaus et al. 2006)

A controversy still remains about the status and role of Sammamish River Chinook. The comanagers intend to seek resolution of these issues during the term of the plan.

Table 2. Co-manager's estimated Chinook abundance at various points in the Lake Washington basin beginning in 2000

	Natural Spawning Escapement		Hatchery Escapement		Total Run Size Entering Sammamish R.
Return Year	Cedar Total (1)	Samm R. Total (2)	UW Hatch (3)	Iss Hatch (4)	Samm sub-basin spawning ground and hatchery escapement plus Lake Samm harvest (5)
2000	133	642	476	3,676	4,318
2001	975	1,689	654	10,451	14,835
2002	673	1,478	1,101	5,620	7,098
2003	798	650	1,564	5,742	6,596
2004	1225	1,012	2,520	12,771	13,783
2005	828	866	2,511	6,852	7,718
2006	1,465	2,214	2,080	8,934	11,931
2007	2,148	1,300	2,196	13,431	21,831

1. Estimated total spawner abundance for the Cedar R population based on redd counts.
2. Total naturally spawning Chinook in the Sammamish sub-basin
3. Number returning to the UW hatchery facility.
4. Number taken into the Issaquah Cr hatchery facility; including fish later passed upstream of the rack.
5. Estimate of run size returning to the Sammamish River sub-basin. This value includes Sammamish natural spawners, Issaquah Hatchery fish, and L. Sammamish Treaty harvest.
6.

Figure 1. Estimated Cedar River Chinook escapement, Sammamish River Chinook escapement, and runsize of Chinook entering the Sammamish River. Note that the run size to the Sammamish River is on a different axis than the natural escapements.

Figure 2. The relationship between the number of Chinook spawning naturally in Bear Creek and the total Sammamish River run size (estimated return to the sub-basin).

Figure 3. The relationship between Cedar River Chinook escapement and Sammamish subbasin abundance indicating correlation between Cedar River Chinook abundance at the UMT (1680) and Sammamish sub-basin abundances above $\mathbf{1 5 , 0 0 0}$ Chinook at current levels of hatchery production.

Harvest Distribution

The harvest distribution of Lake Washington Chinook has not been directly assessed because representative coded-wire tagged hatchery releases are only available for a few brood years from the Issaquah Hatchery in the late 1980s and the University of Washington hatchery in the late 1990s. However, because of their similar life history and genetic heritage, tagged fingerling releases from other Central Puget Sound hatchery facilities (Soos Creek and Grovers Creek) likely provide a good representation of pre-terminal harvest distribution (see, e.g., the Green River profile).

The harvest distribution of Lake Washington Chinook has been estimated using post-season FRAM model runs (Figure 4). Results of modeling show that harvest distribution has changed dramatically between the mid 1980s (the first five years with modeling analysis available) and the most recent five year period with modeling results available. A much larger proportion of the impacts now occur in northern fisheries (Alaskan and Canadian combined) compared to the mid 1980s. In contrast, a sharp reduction in harvest has occurred in the terminal areas, where only about 17.5% of the total impacts occurred in recent years.

Terminal harvests of Lake Washington Chinook have been severely restricted since 1994 by eliminating directed harvest and limiting impacts to incidental catches in Shilshole Bay, the Ship Canal, and in Lake Washington when targeting sockeye and coho. In an effort to utilize Issaquah Hatchery Chinook fisheries have been promulgated in Lake Sammamish in recent years.

Figure 4. Estimated distribution of LW Chinook harvest during two 5-year periods (19831987, 2004-2008) derived from post-season FRAM validation runs. Geographic areas are lumped into Northern (Alaska, Canada), Southern (US pre-terminal) and terminal (Shilshole Bay, Lake WA basin)

Exploitation Rate Trends

Based on post-season FRAM model runs, average total annual exploitation rates for Lake Washington Chinook fell from a high of about 89% in 1988 to a low of 16% in 1998. Since 1998, exploitation rates have risen to between approximately $35-40 \%$ (Figure 5). The estimated annual exploitation rates averaged approximately 5% in the terminal area from 1997-2006, by far the least of the impacts associated with any of the fishery groupings.

Figure 5. Annual adult equivalent exploitation rates of Lake Washington Chinook for all fisheries combined, in Alaska and British Columbia combined, in southern U.S. preterminal areas, and in the Lake Washington terminal areas. Estimates are based on post-season FRAM runs for management years 1983-2008.

Management Objectives

Management objectives for Lake Washington Chinook reflect current information on population status. Achieving these objectives will contribute to continued movement toward recovery of Chinook, while also providing opportunity for harvesting available hatchery fish. Management of Lake Washington Chinook is based on protection of Cedar River Chinook. These Lake Washington Chinook management objectives include a limit on the exploitation rate for all Southern U.S. fisheries, procedures to manage terminal area fisheries based on in-season estimates of terminal area abundance, and provisions for Chinook-directed fisheries when spawning escapement is projected to be greater than the upper management threshold (UMT). This management regime assures that harvest of Lake Washington Chinook will not impede recovery of the ESU.

- The Southern U.S. fisheries will be limited by a ceiling of 20\% (SUS ER) with the exception that if Cedar River Chinook spawning escapement is projected to be greater than the UMT as determined in-season, Chinook-directed fisheries may be implemented in terminal areas by agreement of the Co-Managers that increase the total SUS ER over 20\%.
- A low abundance management threshold (LAT) of 200 Cedar River Chinook will be used to identify critical status of Lake Washington Chinook. If critical status of Lake Washington Chinook is identified, then pre-terminal Southern U.S. fisheries will be restricted by a ceiling exploitation rate no greater than 10%.
- During the adult migration period (June-September) fisheries management in the terminal area is to be based on an inseason update of the Lake Washington run size using fish counts made at the Chittenden Locks. The update will allow for estimating both the total run size and the Cedar River run size entering freshwater. The inseason update method and terminal area fisheries that are based on this update will be agreed to by the Co-Managers prior to implementation. The terminal area includes Shilshole Bay, the Ship Canal, Lake Union, Lake Washington and Lake Sammamish. Terminal area fisheries outside of Lake Sammamish will be managed as follows:
- If escapement is estimated to be at or below the LAT, then Chinook impacts will be limited to the number of Cedar River Chinook caught incidentally during fisheries for other species. Extraordinary measures will be taken in terminal area fisheries for other species to minimize incidental impacts on Cedar River Chinook. These measures include closure of treaty and non-treaty Chinook-directed fisheries and area-specific delays of opening dates for coho fisheries (See Tribal Minimum Fisheries Regime (See Appendix B)
- If escapement is estimated to be above the LAT and below the upper management threshold (UMT) of 1680 Cedar River Chinook, harvest that has an impact on Cedar River Chinook will be restricted to fisheries for other species and/or ceremonial and subsistence fisheries.
- At abundances of Cedar River Chinook above the UMT, Chinook-directed fisheries may be implemented by agreement between the Co-Managers. If Chinook-directed fisheries are implemented in the terminal area, they will be designed to result in spawning escapements that exceed the Cedar River Chinook UMT and increase as abundance increases.
- Stock composition will be estimated by relative run strength of component sub-stocks as forecasted. Where data is available, such as the marked to unmarked ratio at the Chittenden locks or other terminal area data, sub-area stock composition may be revised for fishery modeling. Harvest in Lake Sammamish will be managed to target surplus abundance of Issaquah Hatchery Chinook.
- Total spawning escapement into the Cedar River is expected to include a contribution of hatchery-origin Chinook similar to that observed in years 2003-2008. All naturally
spawning Chinook, natural- and hatchery-origin, will be included when evaluating upper and lower abundance thresholds.
- The aforementioned management objectives provide protection for the Sammamish River population, as well as the Cedar River population. Cedar River Chinook abundance is highly correlated with Sammamish sub-basin abundance. If Cedar River Chinook abundance is high enough to justify Chinook fisheries, then Sammamish sub-basin abundance is expected to be greater than 15,000 Chinook (See Fig. 3). All naturally spawning Chinook in Sammamish River tributaries, natural- and hatchery-origin, will be included in assessing escapement. Harvest management objectives defined by this RMP will continue to provide sufficient protection for Sammamish River Chinook. Additional constraints to harvest are not warranted.
- Management thresholds (LAT and UMT) are not identified for harvest management planning for the Sammamish population. There is insufficient technical basis for derivation of these thresholds. The co-managers acknowledge that NOAA may use default thresholds for status evaluation with the understanding that those default thresholds will not be used as criteria or triggers for harvest management actions or evaluation of those actions, and that the escapements the thresholds are compared to include both natural- and hatchery-origin Chinook.
- The allowable impacts as defined by the harvest management regime will be divided between the non-treaty and treaty fisheries by co-manager agreement in a manner allowing each party to make its own wise-use decisions consistent with the unique characteristics and constraints of its fisheries.
- Adaptive management will be employed in the event of extreme variation from observed environmental or population dynamics.

Data Gaps/ Information Needs

Lake Washington is a complex and unique environment for Chinook salmon. Additional research is needed to better understand life history and survival (Table 3). Subject to funding availability, the highest priority will be placed on data collection to quantify the productivity of Lake Washington stocks. This information will help assess the success of recovery actions whether these involve harvest, habitat restoration, or hatchery supplementation.

Table 3. Data gaps related to harvest management, and projects required to address those data needs

Data gap	Research needed
Estimates of return per spawner and egg to outmigrant productivity	Estimate hatchery contribution on the spawning grounds for run reconstruction. Juvenile migrant trapping in Cedar R at Renton and at/near Landsburg, in Bear Cr, and in Issaquah Cr.
Variability in AUC escapement estimates and correlation w/ redd counts	Continued redd counts and spawner surveys
Adult migration routes and behavior in Lake Washington and Ship Canal	Multi-year ultrasonic tag study to assess temporal and spatial separation of stocks, bottlenecks in migration
Updated escapement goal for Cedar population, including habitat area above Landsburg	Develop model using habitat measures and productivity estimates. Juvenile migrant trap effort at or near Landsburg
Updated escapement estimates for Sammamish population	Spawner surveys and stream life estimates in Issaquah Creek, and assessment of fall back rate from fish passed above the Issaquah Hatchery weir
Terminal area gear-induced mortality	Studies to assess delayed mortality from hook and release, hook drop-off and net drop-out
Uncertainty in run size estimates at the Chittenden Locks relative to spawning ground surveys	Mark/recapture study, independent assessment of Chinook abundance and migration through large lock chamber
Net change in habitat quantity and quality over time	Comprehensive analysis of habitat conditions given restoration efforts and continued land development and other constraints (flood control, LWD restriction)
Temperature impacts on adult Chinook and eggs	Quantify pre-spawning mortality and sub-lethal effects. These include the viability and maturation rate of eggs exposed to high temperatures in vivo
Relative survival of different components of the Cedar River juvenile outmigration	Is survival from emergent fry to smolt and from fry to adult correlated with early life history strategy? (i.e. - what are the relative survival rates of fry outmigrants compared to smolt outmigrants?) Is survival different in the upper basin than it is in the lower basin?
Water management during high flow events in the Cedar	How is scour of redds related to the magnitude and duration of peak flow events and the position of redds
Outmigration survival by stock	Estimate avian predation and other mortality factors

Green River Management Unit Status Profile

Component Populations

Green River Fall Chinook

Geographic distribution

Fall Chinook spawning occurs in the mainstem Green River and in two major tributaries, Soos Creek and Newaukum Creek. Spawning in the mainstem Green River occurs from RM 26.7 to RM 61. Spawning migration is blocked by the City of Tacoma's diversion dam at RM 61, and at RM 64 by Howard Hanson Dam. Spawning occurs in the lower 10 miles of Newaukum Creek. Spawning in Soos Creek occurs below the Soos Creek Hatchery at RM 0.7 and adults surplus to hatchery program needs are passed upstream to spawn. The majority of spawning in Soos Creek occurs in the lower six miles. Reaches surveyed for Green River Chinook spawners are from Highway 167 to the Tacoma Headworks Dam (RM 23.8 to RM 61.0. Newaukum Creek is surveyed from the mouth (RM 0.0) to $400^{\text {th }}$ Street (RM 4.5).

Life History Traits

Fall Chinook begin entering the Green River in July, and spawn from mid-September through early November. Ninety nine percent of smolts outmigrate in their first year (WDFW 1995 cited in Myers et al.1998), with a large but variable proportion migrating downstream as fry. The long-term average age composition of adult returns indicates the predominance of age-4 fish (62 percent), with age- 3 and age- 5 fish comprising 26 percent and 11 percent, respectively (WDF et al.1993, WDFW 1995 cited in Myers et al.1998).

Hatchery Contribution

Returns from hatchery production contribute substantially to natural spawning in the Green River and tributaries. Analysis of coded wire tags recovered from the spawning grounds and the in-river fishery has yielded highly variable results. Collection of data from mass-marked Chinook began in 2003 and has produced estimates of hatchery contribution ranging from 53% to 65% for years 20042007. Estimates of the abundance and productivity of the naturally spawning stock are compromised by these conditions and viability of the naturally spawning stock, absent the hatchery contribution, is uncertain. (Myers et al.1998).

Genetic Information

Chinook hatchery programs currently exist at Soos Creek and Icy Creek. Broodstock has always been collected from local returns since the hatchery began operations in 1903. Spawners in Soos Creek are presumed to be predominantly of hatchery origin. Allozyme analysis has shown no significant difference between Newaukum Creek natural spawners and Soos Creek Hatchery Chinook. (Marshall et al.1995). There is a significant amount of genetic interchange between natural- and hatchery-origin Chinook in the hatchery broodstock and between hatchery adults and natural origin fish on the spawning grounds (WDFWD et al. 2002).

Status

The SASSI review (WDFW et al. 2002) classified Green River Chinook as healthy. Spawning escapement has consistently met the objective of 5,800 since 1997 with the exception of 2005 (Table 1).

Table 1. Natural spawning escapement of Green River Fall Chinook, 1997-2008

Year	Escapement
1997	9,967
1998	7,300
1999	11,025
2000	6,170
2001	7,975
2002	13,950
2003	10,406
2004	13,991
2005	4,089
2006	10,157
2007	7,186
2008	5,901

The nominal escapement goal is based on approximate estimates of escapement in the 1970s, and may not reflect the productivity constraints associated with current degraded habitat, but will be used to guide fisheries management until natural capacity is better quantified. Escapement estimation methods are under co-manager review. Surveys were expanded in recent years to calibrate assumptions regarding the relationship between index area counts and total escapement. Three years of mark/recapture research by WDFW suggested escapements two to three times higher than those derived from redd-based methods. Spawning ground surveyors expressed doubt that they could be missing half or more of the redds. An additional WDFW study was conducted to determine if redd superimposition was occurring. Results were negative. Further research is planned to provide an independent estimate for comparison.

Harvest Distribution

Coded-wire tagged fingerling releases from the Green River (and Grovers Creek) describe harvest distribution in recent years. The PSC Chinook Technical Committee analysis cited below expands CWT recoveries for sampling rate and adjusts for adult equivalence. Fisheries in British Columbia and Alaska account for 41 percent of total fishing mortality. Washington troll, net and recreational and Puget Sound net fisheries account for $12 \%, 24 \%$ and 24%, respectively (Table 2).

Table 2. Average distribution of fishery mortality of South Sound fingerling Chinook derived from CWT analysis (CTC 2008).

Alaska	B.C.	US Troll	US net	US sport
0.9%	39.3%	11.9%	24.2%	23.7%

Exploitation Rate Trends

Post-season FRAM runs, incorporating actual catch and stock abundance indicate that total annual exploitation rates have increased since 2001 with most of the increase in northern fisheries. Some reduction is expected in northern fishery impacts as a result of the 2008 PST agreement. ER's in preterminal southern fisheries have remained fairly constant. Terminal area ER's have varied. Green River Chinook are managed to meet or exceed the escapement goal. This objective was not achieved in one year of the past eleven (Table 1). In 2005 terminal area management actions identified lower abundance than forecasted, resulting in closure mid-season as reflected by the terminal ER being 9\%, less than half of the recent year average as may be seen in Table 3 below.

Table 3. Pre-season projected and post season estimated Green River Chinook Exploitation Rates for 2001 - 2008, as estimated by FRAM pre-season and validation modeling.

	Pre-season FRAM				FRAM validation			
	Total	North	PT SUS	Term SUS	Total	North	PT SUS	Term SUS
2001	49%	10%	12%	27%	33%	11%	7%	16%
2002	55%	7%	10%	38%	46%	11%	6%	29%
2003	50%	10%	10%	30%	44%	17%	8%	20%
2004	62%	25%	10%	27%	51%	20%	8%	22%
2005	61%	18%	10%	33%	52%	33%	10%	9%
2006	50%	22%	10%	17%	48%	19%	10%	19%
2007	60%	19%	9%	33%	57%	19%	10%	28%
2008	56%	20%	7%	28%	59%	21%	6%	32%

Management Objectives

The co-managers manage fisheries to meet or exceed the spawning escapement goal of 5,800 Green River Chinook. This goal has been met or exceeded in all but one (2005) of the past eleven years. The co-managers expect that the goal will continue to be met or exceeded as a result of this management approach.

Management objectives for Green River Chinook include an exploitation rate objective for preterminal Southern U. S. fisheries and a procedure to manage terminal-area fisheries that is based on inseason abundance thresholds (triggers) designed to assure that the escapement goal will be achieved. This management regime assures that harvest related impacts on Green River Chinook will not impede recovery of the ESU.

Washington preterminal fisheries impacts on Green River Chinook are managed to not exceed a 15 percent 'SUS' exploitation rate, as estimated by the FRAM model. Pre-terminal fisheries include the coastal troll and recreational fisheries managed under the Pacific Fishery Management Council, and commercial net and recreational fisheries in Puget Sound outside of Elliott Bay.

Terminal area abundance is evaluated annually utilizing a test fishery conducted since 1989. Using this data, planned terminal area fisheries directed at Chinook are conditional to meeting criteria defined for two in-season triggers. For the first in-season trigger, a catch value less than 100 Chinook in the test fishery would cause cancellation of subsequent commercial and sport fisheries. For the second in-season trigger, a catch less than 1,000 Chinook for the first commercial opening would cause cancellation of any further Chinook-directed fishing. These criteria were defined to correspond with a total run of about 15,000 Chinook (hatchery and natural origin combined).

In-season abundance thresholds were met in 2000-2008. Terminal area Chinook-directed treaty net and sport fisheries were implemented as scheduled with the exception of the 2005 season. Although the threshold criteria were achieved for that season, the co-managers canceled further fishing. Natural escapements for 1997-2008 are provided in Table 1.

A low abundance threshold of 1,800 natural spawners is established for the Green River management unit on the basis of the lowest observed escapement resulting in a higher escapement four years later. If natural escapement is projected to fall below this threshold during pre-season planning, then additional management measures will be implemented to minimize fishery-related mortalities of Green River Chinook in accordance with procedures described in section 5.3 (Response to Critical Status). These measures include closure of treaty and non-treaty Chinookdirected fisheries, and area-specific delays of opening dates for coho fisheries (See Tribal Minimum fisheries Regime, Appendix B.)

Data Gaps/ Information Needs

Several aspects of the productivity of Green River Chinook are potentially affected by hatcheryorigin fish spawning naturally. The abundance, timing, spawning distribution, and age structure of natural-origin Chinook may be masked by the presence of hatchery-origin fish. The viability of the natural origin population cannot be accurately assessed without determining the effects of hatchery straying, so the need for this information will prioritize research. Table 4 gives descriptions of the data needs and how they are being addressed.

Table 4. Data gaps in Green River Chinook stock assessment and harvest management, and projects required to address those gaps.

Data need	Related project	Update
Quantification of the proportion of natural escapement that is comprised of hatchery strays.	1. Completion of a CWT data set for refinement of current CWT- based estimates. (work in progress) 2. Mass marking of hatchery production. (Brood years since 1999 marked	1 and are complete Surveys for marked fish have resulted in better estimates of hatchery contribution
Re-evaluation of escapement estimation methodology	1. Expanded surveys to calibrate expansion of index area data to total. (begun in 1998 - work continues.)	1 and 2 are complete Results of mark/recapture study gave unrealistic escapement estimates. Redd superimposition study did not resolve questions.
2. Mark/recapture study to independently calibrate total escapement estimate in association with expanded survey effort. (done in 2000- 2002, report in progress)	New study proposed to obtain independent estimate.	
Estimation of the number of Chinook fry and smolts that emigrate annually from the mainstem Green and Newaukum Creek.	Trap placement in the mainstem Green 1999-2002)	A trap has been operated annually since 1999.
Gear induced incidental mortality	A literature review and preliminary study design should be done.	Funding has been obtained for near term future operation

White River Management Unit Status Profile

Component Populations

White River Spring Chinook

Geographic distribution

White River Chinook are trapped at the Lake Tapps diversion dam in Buckley (RM 23.4) and are transported above Mud Mountain Dam (RM 29.6). Chinook spawning above Mud Mountain Dam occurs in the White River and several tributaries, notably the West Fork White, Clearwater, and Greenwater rivers, and Huckleberry Creek. Chinook also spawn below the Lake Tapps diversion dam in the White River, Boise Creek and Salmon Creek.

Spawning ground surveys are conducted in the Clearwater and Greenwater rivers and in Huckleberry Creek above Mud Mountain Dam, and in the White River mainstem, Boise Creek and Salmon Creek below the diversion dam. Visibility in the White River mainstem is often impaired by glacial sediment, affecting estimates of spawner abundance.

Tagged White River Spring Chinook have been recovered in the Puyallup River and its other tributaries indicating some degree of within-system straying.

The White River population is the only spring stock still present in southern Puget Sound and is genetically distinct from other Chinook stocks in Puget Sound. The White River Hatchery and the Minter Hupp Complex are used to supplement production. The supplementation program is considered essential to recovery and hatchery production is included in the listed ESU.

Life History Traits

Spring Chinook enter the Puyallup River from May through mid-September, and spawn from midSeptember through October. Fry emerge from the gravel in late winter and early spring. In contrast to other spring stocks in Puget Sound, White River Chinook smolts emigrate primarily (80 percent) as subyearlings (WDFW et al., 1996), after a short rearing period of three to eight weeks. Adults mature primarily at age-3 or age-4.

Hatchery Contribution

A portion of the spring Chinook juveniles produced at the White River Hatchery and the Hupp/Minter complex are reared in upper White River watershed acclimation ponds. Since the 1999 brood year, acclimation pond fish have been ventral fin clipped to differentiate them from natural
returns and on-station hatchery releases. Since 2003, between 17% and 61% of the adult Chinook returns sampled at the Buckley Trap were acclimation pond returns. From 2006 through 2009, returning adult hatchery Chinook surplus to the White River Hatchery needs have been trucked upstream. This number has ranged from 85 to 426 per year.

Genetic Information

A comprehensive review of the available genetic data from natural spawning and hatchery Chinook was conducted by Shaklee and Young (2003). This study was cited in the Puget Sound TRT's analysis of the genetics of White River Chinook (Ruckelshaus, et al., 2006). Genetic data support the independence of Puyallup basin Chinook from its nearest neighbors (Green and Nisqually river populations) and strongly support independence between the Puyallup and White River populations. Within the White, the early run hatchery and wild genetic samples are very similar, reflecting the effects of the broodstock program that began in the 1970s.

The origins of late-returning Chinook salmon in the White River are uncertain. Genetic evidence indicates that the extant population is characteristic of Green River-origin Chinook salmon and genetically distinct from the early returning White River population (Shaklee and Young, 2003). According to the TRT, these fish may represent:

- a life history form that was a distinct historical population,
- a late-returning form that was once part of the historical White River population but was replaced by nonnative Chinook salmon,
- a part of the historical late-returning Puyallup population that used the lower White River, or
- recent establishment of the life history in the White River from introductions of Green Riverorigin hatchery fish.

Status

The status of White River spring Chinook has been considered critical although abundance has improved in recent years. Escapement exceeded 5,000 Chinook in the early 1940s, but the effects of dams and other habitat degradation reduced abundance to tens of fish by the late 1970s. An emergency egg bank was begun in 1977 at the Minter Creek and Hupp Springs hatcheries.

A settlement between Puget Sound Energy (PSE) and the Muckleshoot Tribe in the mid 1980s resulted in higher flows below the diversion dam and construction of the White River Hatchery, since used to rebuild native spring Chinook. Several acclimation ponds have been established in the upper basin in cooperation with the Puyallup Tribe. Juvenile passage improvements were constructed at Mud Mountain Dam and in the Lake Tapps diversion canal in the late 1990s. PSE ceased hydroelectric operations in 2004, restoring a more natural flow regime below the diversion.

The U.S. Army Corps of Engineers operates the Buckley fish trap on the south bank of the Lake Tapps diversion dam, and records daily adult returns and fish haul counts. Buckley haul counts from

1942 through 2008 are shown in Figure . Data gathered at the trap provides the most accurate enumeration available for Chinook transported to the upper basin. The White River Hatchery is located on the north bank of the river at the diversion dam and includes a fish trap that attracts mostly hatchery returns. Chinook transported from the Buckley trap to the upper White River watershed, and hatchery returns to the White River Hatchery are shown in Table 1.

Figure 1. Adult White River Chinook Transported above Mud Mountain Dam
Early and late-timed Chinook overlap considerably in their timing of arrival at the two traps, and therefore separation between them is not precise. As conditions allow, adipose-bearing Chinook without detectable CWTs are sorted and transported upstream. These include both natural-origin fish (NOR) and supplemental production from upper basin acclimation ponds. Adipose-clipped Chinook are identified as strays and returned to the river below the dam. In recent years, some NOR Chinook have been taken to the hatchery for broodstock integration, while some surplus hatchery returns have been transported to the upper basin.

Marking of acclimated Chinook has improved identification of NOR returns, however, the ability to distinguish between NOR spring, spring/fall hybrid and fall Chinook on either the spawning grounds or at the Buckley trap is limited. Trap capacity is overwhelmed during periods of high salmon abundance including large coho and pink salmon returns, impeding the ability to sort and count Chinook. The Committee has determined that, for the purposes of management, no distinction can be made between the early and late-timed Chinook at the fish traps or on the spawning grounds. New
trap construction is currently scheduled for 2012-2016 as part of an Army Corps of Engineers' diversion dam replacement project. The new trap facilities are expected to improve sorting and sampling capability.

The total number of Chinook based on surveys upstream of Mud Mountain Dam from 1999 to 2006 averaged 550 (live count) and 590 (adjusted by multiplying redd counts by 2.5 Chinook per redd). The average number of Chinook transported upstream for the same period averaged 1,460, indicating that only about 40 percent of the trap count is accounted for in spawning surveys. Poor visibility in the glacial White River mainstem likely prevents a full accounting of Chinook. It is also possible that some Chinook fall back down through Mud Mountain Dam.

The South Sound Spring Chinook Technical Committee is currently re-evaluating escapement and recovery goals for the stock. The escapement goal of 1,000 natural spawners passed above the Mud Mountain dam, which does not include mainstem spawners downstream of the dam, is under subcommittee review. The number of fish transported upstream will continue to be used as an index for stock goals and annual assessment of stock status. The hatchery program will continue to use as broodstock only those Chinook that meet genetic screening for spring, or early-timed Chinook.

Table 1. Escapement of White River Spring Chinook, 1998-2008.

Return Year	CWT Chinook to White River Hatchery	Chinook Transported above Mud Mt. Dam	Total
1998	463	323	786
1999	429	556	985
2000	740	1,490	2,230
2001	757	2,103	2,860
2002	665	696	1,361
2003	1,009	1,426	2,435
2004	963	1,457	2,442
2005	1,568	1,724	3,327
2006^{1}	1,459	2,093	3,592
2007^{1}	1,262	4,874	6,181
2008^{1}	971	2,036	2,668
2009^{1}	680	1,099	1,804

1. Come CWT-bearing hatchery adults surplus to hatchery needs were hauled and released above Mud Mountain Dam, and are therefore included in both columns.

Harvest Distribution

From 1983 - 2006, approximately 71% of the White River Chinook harvest (range 39\%-92\%) occurred in the pre-terminal Southern U.S. fishery (FRAM validation runs, 2007 calibration, July 21, 2008). Alaska and British Columbia fisheries together accounted for 15% of the harvest (range 0% 36%), and terminal harvests averaged 11% (range $2 \%-47 \%$). Over this period there has been a gradual increase in the proportion of the catch represented by terminal fisheries, and a decrease in pre-terminal fisheries. Average distribution of annual mortality across west coast fisheries for recent years is shown in Table 2.

Table 2. Recent average distribution of annual harvest mortality.

Years	Alaska	Canada	WA ocean	Pre terminal net \& troll	PS sport	Terminal net	Escapement
$2000-2006$	0.000	0.028	0.005	0.005	0.076	0.042	0.816

Exploitation Rate Trends

White River Chinook have been represented in the Fishery Regulation Assessment Model (FRAM) by two distinct tag groups. From 1990 through 1999, these fish were modeled using yearling tag groups released from Minter/Hupp hatchery facilities. Because natural production from the White River migrates primary as sub-yearlings, when fingerling tag data from the White River Hatchery releases became available they were employed in FRAM. The estimated ER impact on fingerling production may be seen in Figure 2, below. Based on coded-wire tagged fingerlings releases and recovered during 2000-2006, total exploitation of White River spring Chinook has averaged 18%.

Figure 2. White River Chinook total AEQ exploitation rate in all fisheries, as estimated by post season FRAM validation runs, 1999 - 2008.

The spike in exploitation rate (ER) shown in 2006 in the figure above is driven by a high incidence of age 2 recoveries and is not representative of the adult ER in 2006 (personal communication, Larrie Lavoy).

Management Objectives

The management objective in effect during 2000-2009 has been a total exploitation rate of 20%. This was recognized as a conservative objective that would provide spawning escapements well in excess of the low abundance critical threshold of 200 spawners. Under this regime, escapements have increased, averaging 1,460 during the period 1999-2006. During this same period returns to the hatchery increased from an average of 820 (1999-2003) to 1,375 (2004-2008).

Fisheries in Washington will be managed to achieve a total exploitation rate, including fisheries in British Columbia, no greater than 20 percent. This exploitation rate ceiling, which is three points higher than the ceiling in the 2001 Harvest Management Plan, reflects changes in coded wire tag and historical catch data incorporated in the most recent calibration of FRAM (L. LaVoy, WDFW, memorandum to co-manager technical staff, February 12, 2002). Achievement of this rate requires continued constraint of Puget Sound net and recreational fisheries, and allows minimal tribal fisheries in the river. Tag recovery and escapement data are insufficient, at present, to support direct
assessment of the productivity of the stock. Should escapement be projected below the low abundance threshold of 200 , a CERC of 15% in Southern U.S. fisheries will be applied.

Data Gaps/ Information Needs

A number or uncertainties exist concerning Chinook productivity and stock origins in the White River. Table 3 lists several of the key uncertainties. The highest priority for future research will focus on improving understanding of the productivity of naturally spawning Chinook and the stock origins of late returning Chinook.

Table 3. Data gaps in White River Chinook stock assessment and harvest management, and projects required to address those gaps.

Data Gap	Research Needed
Uncertainty in stock origin/composition of spawners above and below Mud Mountain Dam	Additional genetic sampling at the trap and on the lower river spawning grounds using larger sample sizes over the full run timing. Quantification of hatchery- and natural-origin adults on the spawning grounds.
Timing of river entry of early and late timed Chinook	Radio or ultrasonic tracking study
Estimation of natural smolt production	Investigate feasibility of outmigrant trapping above and below Mud Mountain Dam
Resolve differences between trap counts and spawner estimates above the dam	Estimate pre-spawn mortality rate of adults transported above Mud Mountain Dam, recycle rate, and mainstem spawning abundance

Puyallup River Fall Chinook Management Unit Status Profile

Component Populations

Puyallup River fall

Spawning Distribution

Fall Chinook spawn in South Prairie Creek (a tributary of the Carbon River) up to RM 15, the Puyallup mainstem up to Electron Dam at RM 41.7, to a limited extent in the mainstem and tributaries of the upper Puyallup above Electron Dam, the lower Carbon River up to RM 8.5, Voight Creek, Fennel Creek, Canyon Falls Creek, Clarks Creek, Clear Creek, Kapowsin Creek, the lower White River, Salmon Creek, and Boise Creek.

Genetic and Life History Traits

Puyallup River fall Chinook are genetically similar to Green River Chinook, reflecting extensive use of this stock to initiate local hatchery programs. Genetic analysis suggests a low degree of independence from the Green populations; the current existence of native fall genotypes is uncertain (Ruckelshaus et al.2006). Fall Chinook returning to the Puyallup and to the White River are, however, more strongly genetically independent and distinct from the White River spring population.

Freshwater entry into the Puyallup River occurs from mid-June through October, and spawning occurs from mid-September through mid-November. Scales collected from South Prairie Creek between 1992 and 2007 indicate that average annual age composition is: 1.8% age- $2,16.7 \%$ age-3, 67.3% age- $4,12.0 \%$ age- 5 and 0.1% age- 6 fish (WDFW, unpublished data).

Habitat Limiting Factors

The Puyallup watershed has been altered by timber harvest, hydroelectric facilities, and floodplain modification. The lower river has been channelized and constricted by levees, degrading spawning habitat and eliminating virtually all off-channel rearing habitat. The estuarine delta and Commencement Bay have been developed for industrial purposes, leading to degradation and loss of habitat crucial to juvenile Chinook.

Adult access to the upper Puyallup watershed is still inhibited by the Electron diversion dam; the fish ladder constructed in 2001 is not functional at high flow. Natural Chinook smolt production from the upper watershed is subjected to entrainment in the Electron diversion. A trap intended to collect smolts in the forebay above the powerhouse is inefficient, and allows the majority of smolts to be killed by passage through the turbines.

Pierce County (2008) identified and prioritized habitat actions for salmon recovery in the Puyallup watershed. For fall Chinook, priority projects included the improvement of smolt screening on the Electron diversion, levee setback and flood-plain re-connection projects upstream of RM 2.6, and
increases in estuarine off-channel habitat below RM 2.6. Due to the complexity and cost of the high-priority projects, they are unlikely to be completed during the span of this plan.

Hatchery Production

Hatchery production of fingerling fall Chinook occurs at Voight Creek Hatchery (WDFW), which enters the Carbon River at RM 4, and Clarks Creek Hatchery (Puyallup Tribe), which enters the lower Puyallup mainstem at RM 6. Storm damage to the Voight Creek facility precluded Chinook production for brood year 2008. Production objectives were subsequently reduced from 1.6 million to 400,000 . Production objectives for the Clarks Creek facility, which began in brood year 2004, were increased from 400,000 to 1.6 million. The Tribe will release 100,000 Clarks Creek fingerlings into the Cowskull acclimation ponds in the upper Puyallup watershed.

Escapement

Spawning escapement to the Puyallup system is based on surveys of the South Prairie - Wilkeson Creek basin, Fennel, Canyon, Kapowsin, and Clarks creeks. A substantial number of fall Chinook also spawn in the White River below the Buckley trap. Spawning occurs in the mainstem White River, Boise Creek, and Salmon Creek. The mainstem and Carbon Rivers are not consistently surveyable due to glacial turbidity and/or high flow, so the escapement estimation method relies on the ratio of current-year escapement to 1999, when the mainstem and Carbon were surveyed. The marked increase in pink salmon escapement to the Puyallup system in recent years has further confounded Chinook escapement estimates; when large numbers of pink salmon concurrently spawn in South Prairie Creek, Chinook counts are unreliable.

Natural escapement to the Puyallup basin ranged from 1,063 to 2,932 since 1999, with no apparent negative or positive trend. Average escapement from 2004-2008 was 2,159 (Table 1). Total escapement to South Prairie-Wilkeson creeks ranged from 389 to 1,430 , averaging 812 for the recent five years, and consistently exceeding the escapement goal 500 . The escapement time series is discontinuous, with estimates since 2002 including accounting of fall Chinook spawners in the lower White River. The number of natural-origin spawners since 2002 ranged from 669 to 1,778, averaging 1,123 for the recent five years.

The changes in hatchery production will likely affect natural escapement and spawning distribution. Lower production at Voights Creek is expected to reduce the number of hatchery-origin Chinook spawning in South Prairie Creek. More intensive escapement survey effort and carcass sampling may be needed to describe the contribution of Clarks Creek-origin Chinook to natural escapement.

The estimated proportion of hatchery-origin fish in the South Prairie Creek index has varied in recent years, ranging from 18% to 45%.

Table 1. Fall Chinook escapement to the Puyallup River basin and the South Prairie Creek index reach.

	Puyallup basin		South Prairie Cr.	
	Total	NOR	Total	NOR
1992	3,034			
1993	1,999			
1994	2,526		798	
1995	2,701		1,408	
1996	2,444		1,268	
1997	1,554		667	
1998	3,071		1,028	
1999	1,988		1,430	
2000	1,193		695	
2001	1,915		1,154	
2002	1,807	1,489	840	570
2003	1,547	758	740	349
2004	1,843	1,047	573	433
2005	1,063	669	389	320
2006	2,232	922	978	552
2007	2,932	1,200	1,194	658
2008	2,725	1,779	925	633

Harvest distribution and exploitation rate trends:

The harvest distribution of Puyallup fall Chinook has not been directly assessed. Fishery recoveries of CWT'd and marked releases from Voight Creek, beginning with brood year 2002 will provide relevant information. Distribution in pre-terminal fisheries is likely similar to that of the South Sound fingerling indicator stock, which is composed of tagged releases from the Green River (Soos Creek) and Grovers Creek hatcheries (see the Green River MU profile). For 2001-2006, an average of 39% of the fishery recoveries of that indicator stock were in British Columbia, 12\% were in SUS troll fisheries, 24% in Puget Sound net fisheries, and 24% in Washington recreational fisheries (CTC 2008b).

Post-season FRAM validation runs indicate that the total annual adult-equivalent exploitation rates for Puyallup fall Chinook have averaged 62% since 2001. Total ERs exceeded the RER until 2005, but have subsequently declined. The ER associated with northern fisheries increased since 2001, and ranged from 11% to 33% since 2003 (Table 2). SUS fishery ERs have fallen, from 62% in 2001 to an average of 21% from 2006-2008, due to reduction in terminal (in-river) fishery impacts; preterminal SUS ERs have been stable in the range of 6% to 10%. Preseason modeling has been
adjusted to more accurately predict terminal harvest impacts, which have declined substantially in recent years.

Pre-season and post-season harvest impact estimates are affected by the uncertainty in estimating spawning escapement and total runsize. The co-managers have revised methods for accounting and forecasting escapement of hatchery and natural-origin fall Chinook, and improved estimates of harvest mortality.

Table 2. Annual, adult equivalent exploitations rates for Puyallup fall Chinook derived from postseason FRAM runs.

	Total	Northern	PT SUS	Term
2001	72%	11%	7%	55%
2002	69%	11%	6%	51%
2003	63%	16%	8%	39%
2004	72%	20%	8%	43%
2005	69%	33%	10%	26%
2006	48%	19%	10%	18%
2007	50%	19%	10%	21%
2008	50%	21%	6%	23%

Management Objectives

The harvest management strategy for Puyallup fall Chinook assumes the indigenous late-timed Chinook population has been extirpated, so recovery will involve local adaptation of the extant Green River-origin stock. The suitability of this stock to achieve recovery objectives is not certain. The hatchery program, in recent years, has utilized only locally-collected broodstock, to promote adaptation.

Harvest strategy reflects the requirement for meaningful exercise of the tribes' treaty-reserved right to harvest Chinook, and WDFW's intent to enable recreational fishing opportunity. The tribes' objective is to conduct commercial and C\&S fisheries in the Chinook management period in the Puyallup River, and to fully harvest surplus coho and pink salmon. Recreational opportunity will be provided to harvest Chinook, pink, and coho in the Puyallup mainstem and the Carbon River.

Harvest objectives reflect the managers' intent to maintain stable natural spawning escapement to the Puyallup system. Optimum escapement (i.e., MSY) and habitat capacity have not been quantified, due to constraints on measuring total system escapement and recruitment. Escapement has, however, been more consistently and accurately estimated in the South Prairie Creek Wilkeson drainage. Voight Creek hatchery returns have comprised a significant proportion of natural spawners in South Prairie Creek in recent years. Recent changes in hatchery production will affect the distribution of hatchery-origin spawners, and will likely reduce their number in South Prairie Creek. Escapement surveys over the next five years will necessarily continue to focus on clear-water tributaries, but surveys and sampling may change to better quantify the distribution and contribution of Voight Creek and Clark Creek-origin adults to natural spawning.

The objective for pre-season harvest planning will be to constrain SUS fisheries, so that the total ER does not exceed 50%. Recent year post-season FRAM estimates have exceeded this ceiling, but the underlying objective to ensure natural escapement of at least 500 to South Prairie Creek has been consistently achieved. Since 2002, escapement to South Prairie Creek has comprised an average of 40% of total escapement to the basin (Table 1) The UMT is set at this level, as an aggregate of natural- and hatchery-origin adults, for the purposes of post-season performance assessment.

Habitat-based assessment of current productivity, using the Ecosystem Diagnosis and Treatment model, provides estimates of Chinook productivity for the Puyallup River, excluding the White River basin (Mobrand Biometrics 2003). EDT models indicate that current natural productivity is very low. It estimates MSY escapement at 522, and equilibrium escapement at 1,137. EDT models suggest that life history trajectories associated with South Prairie Creek are relatively more productive; MSY escapement is estimated at 230, and equilibrium escapement at 667. Recent-year estimates of the number of natural-origin adults spawning in South Prairie Creek range from 320 to 658 (Table 1), and basin total NORs range from 669 to 1779, exceeding the EDT estimate of MSY escapement. While EDT models do not precisely estimate the parameters defining freshwater production potential (Steel et al.2009), these analyses support the conclusion that recent escapement have achieved or exceeded the level associated with optimum productivity.

The LAT for Puyallup Chinook is defined as 500 natural spawning adults (hatchery and naturalorigin). With no apparent trend in recent escapements, and considering the potential changes in escapement due to changes in the hatchery programs, we expect escapement for the duration of this Plan to remain well above the LAT. However, if the pre-season FRAM projection of natural escapement to the Puyallup system falls to or below the LAT of 500, pre-terminal SUS fisheries will be constrained so the associated ER does not exceed 12%. Terminal-area fisheries will also be further constrained by restricting recreational fisheries and tribal net fisheries to maintain fishing opportunity on harvestable hatchery Chinook, pink, coho, and chum salmon, and ensuring tribal C\&S fishing opportunity.

During the period 2004-2009, as a response to increasing exploitation rates on Puyallup Chinook in northern (Canadian \& SEAK) fisheries, the Co-managers found it necessary to restrict terminal area fisheries so that the total ER did not exceed 50\% limit. For the 2006 and 2007 seasons, tribal chinook fishing was closed entirely and the opening of recreational fishing in the Puyallup River was delayed until September 1. Tribal net fishing in Commencement Bay was also closed and the recreational fishery in this area was delayed nearly two weeks (closed through August 11). The Tribal fishery in the first week of the coho management period has been limited to 1 day of fishing to limit incidental Chinook catch. The Co-managers' response to critical status would likely be similar to the terminal area fishery restrictions taken in response to northern fishery impact increases.

The combined effect of pre-terminal and terminal fishery actions in response to the determination of critical status is likely to result in a total southern U.S. exploitation rate of approximately 23% to 27% based on reference to pre-season FRAM models. Post season FRAM validation estimates have been slightly higher ranging up to 30% from 2006 to 2008.

Data gaps

- Determine the changes in natural spawning escapement and spawning distribution that result from the changes in hatchery production.
- Validate standardized methods for estimating total spawning escapement based on South Prairie - Wilkeson and index reaches. Estimate the number of fall Chinook spawning in the White River and its tributaries.
- Review methods for forecasting abundance, estimating index-reach and total natural escapement, and natural- and hatchery-origin components.
- Analyze new information on harvest distribution from recovery of CWT group releases from Voight Creek Hatchery.

Nisqually River Chinook Management Unit Status Profile

Component Populations

Nisqually fall

Geographic description

Adult Chinook ascend the mainstem of the Nisqually River to river mile 40, where further access is blocked by the La Grande and Alder dams, facilities that were constructed for hydroelectric power generation by the City of Tacoma's public utility in the early 1900's. Due to a substantial fish passage barrier, it is unlikely that Chinook utilized higher reaches in the system prior to their construction. Below La Grande the river flows to the northwest across a broad and flat valley floor, characterized by mixed coniferous and deciduous forest and cleared agricultural land. Between river miles 5.5 and 11 the river runs through the Nisqually Indian Reservation, and between river miles 11 and 19 through largely undeveloped Fort Lewis military reservation. At river mile 26, a portion of the flow is diverted into the Yelm Power Canal, which carries the water 14 miles downstream to a powerhouse, where the flow returns to the mainstem at river mile 12. A fish ladder provides passage over the diversion. Both Tacoma's and Centralia's FERC license requires minimum flows in the mainstem Nisqually.

Fall Chinook spawn in the mainstem above river mile 3, in numerous side channels, as well as in the lower reaches of Yelm Creek, Ohop Creek, the Mashel River and several smaller tributaries. Production is augmented by production at the Kalama Creek and Clear Creek hatcheries, operated by the Nisqually Indian Tribe.

Life History Traits

Adult fall Chinook enter the Nisqually River system from July through September, and spawning activity continues through November. After emerging from the gravel, juveniles typically spend two to six months in freshwater before beginning their seaward migration. Residence time in their natal streams may be quite short, as the fry usually move downstream into higher order tributaries or the mainstem to rear. Extended freshwater rearing for a year or more, that typifies some Puget Sound summer/fall Chinook stocks, has not been observed in the Nisqually system.

Returning adults mature primarily at age- 3 and age-4, comprising 45 and 31 percent, respectively (WDF et al.1993, WDFW 1995 cited in Myers et al.1998).

Stock Status

It is generally agreed that native spring and fall Chinook stocks have been extirpated from the Nisqually River system, primarily as a result of blocked passage at the Centralia diversion, dewatering of mainstem spawning areas by hydroelectric operations, a toxic copper ore spill associated with a railroad trestle failure, historically high harvest rates in the preterminal fisheries, non-stock specific hatchery practices, and other freshwater and marine habitat degradation (Barr, 1999).

Studies are underway to determine whether any genetic evidence suggests persistence of the native stock. Initial results indicate that the existing naturally-spawning and hatchery stocks are indistinguishable, and were derived from hatchery production that utilized, principally, Puyallup River and Green River fall Chinook.

Escapement estimates for the Nisqually system are calculated by the method developed by Herrington-Tweit and Newman (1986), which expands peak counts in the mainstem index (RM 21.6-26.2) and Mashel River index (RM 0.5-3.2) to estimate total basin escapement. Spawner counts in the mainstem Nisqually are difficult because of the glacial nature of the river, and are highly variable due to the poor viewing conditions. The 1986 expansion methodology was intended to account for this issue, but it was developed using data collected prior to the construction of the Clear Creek Hatchery. Because hatchery strays make large contributions to natural escapement, the distribution of spawning in the watershed has likely changed, meaning that the 1986 methodology may no longer be an accurate estimator of natural spawner abundance. However, these estimates have been validated by change-in-ratio (CIR) estimates (M. Alexandersdottir, NWIFC, pers comm 2006) for 2002 - 2005. Survey-based estimates fall within the confidence bounds of the CIR estimates.

Natural spawning escapement has ranged from 340 to 2,788 over the past 15 years (Table 1). Natural escapement exhibits a significantly increasing trend over that timeframe, and escapement has exceeded the nominal escapement goal of 1200 in five of the last seven years. The marked increase in escapement in years since 2004 is attributable to a management shift to emphasize a natural escapement objective, increased survey frequency in the index reaches in the Mashel River and the mainstem, and an increase in the return of hatchery produced Chinook

The natural escapement goal has been consistently achieved despite relatively high harvest rates, due in part to the contribution of hatchery-origin Chinook to natural spawning. Hatchery returns have increased over the past 15 years, from a low of 1,370 in 1993, to a high of 15,497 in 2007. Terminal net harvest has shown a similar trend, increasing from 4,024 in 1993, to a high of 22,933 in 2007.

Hatchery-origin and natural-origin contributions to natural spawning escapement have been estimated since 2004, but the precision and accuracy of these estimates are poor due to relatively low mark rates on hatchery fish ($85-92 \%$ in recent years), and difficulty in sampling adequate numbers of carcasses in all of the spawning areas. When adjusted for mark rates and stratified by sampling areas, hatchery-origin spawners have been estimated to account for an average of 75% of the natural spawners from 2004-2007 (range of 74\%-76\%).

Table 1. Annual abundances of fall Chinook returning to the Nisqually River system.

Year	Terminal Net Harvest	Hatchery	Escapement Natural	Total
1993	4,024	1,370	1,655	3,025
1994	6,183	2,104	1,730	3,834
1995	7,171	3,623	817	4,440
1996	5,365	2,701	606	3,307
1997	4,309	3,251	340	3,591
1998	7,990	4,067	834	4,901
1999	14,614	13,481	1,399	14,880
2000	6,836	4,918	1,253	6,171
2001	14,098	7,612	1,079	8,691
2002	11,703	9,341	1,542	10,883
2003	14,425	7,697	627	8,324
2004	13,834	8,225	2,788	11,013
2005	11,088	12,470	2,159	14,629
2006	21,568	10,535	2,179	12,714
2007	22,933	15,497	1,743	17,240
2008	13,493	4,285	3,398	7,683

Harvest distribution and exploitation rate trend

The harvest distribution of Nisqually Chinook has been described by analysis of coded-wire tagged fingerling Chinook released from Clear Creek and Kalama Creek hatcheries (Table 2). In recent years 17 percent of the total harvest mortality has occurred in British Columbia and Alaska, primarily in the WCVI troll fishery. Washington troll fisheries have accounted for 7 percent of total fishery mortality. Recreational (ocean and Puget Sound) and net fisheries in Puget Sound, have accounted for 29 and 47 percent of total mortality, respectively.

Table 2. Harvest distribution of Nisqually Chinook, as expressed as the proportion of fishery mortality, 2000-2006 (CTC 2008).

Year	AK\%	CN\%	US tr \%	US net\%	US spt \%
2000	0.0%	20.8%	1.9%	42.3%	34.9%
2001	0.5%	10.4%	7.0%	41.2%	41.0%
2002	0.0%	16.7%	5.2%	55.5%	22.6%
2003	0.1%	13.2%	6.3%	57.3%	23.0%
2004	0.3%	14.2%	12.2%	50.3%	23.0%
2005	0.0%	24.5%	9.6%	24.5%	41.4%
2006	0.2%	13.5%	8.9%	60.0%	17.4%
Average	0.2%	16.2%	7.3%	47.3%	29.1%

The total annual exploitation rate for Nisqually Chinook, as described by post-season FRAM runs, has declined slightly since the early 1990's (Figure 1), but still averaged 76\% from 2000-2008. FRAM rates are assumed to accurately index the recent trend in exploitation rate, but may not accurately quantify annual exploitation rates, because of the lack of CWT data in the model base period. Exploitation rates in northern fisheries have increased since the late 1990's, averaging 7\% from 1995-2002, and 20\% from 2003-2008. Pre-terminal SUS exploitation rates have remained fairly constant, averaging 18\% from 1998-2008. Terminal rates have been more variable, and have averaged 45% over the same period.

Figure 1. Annual, adult equivalent fisheries exploitation rate of Nisqually fall Chinook in Northern, PTSUS, and terminal fisheries, from 1988 - 2008, estimated by 2007 FRAM validation run.

Recovery strategy

A key long-term goal of the Nisqually Chinook Recovery Plan (NCRT 2001) is to establish a selfsustaining, naturally spawning Chinook population in the basin. The plan acknowledges that a number of habitat, hatchery, and harvest actions must take place if that goal is to be reached. The most recent five years of this effort has been dedicated to building the demographic strength of this population and restoring significant habitat features. For example, nearly 72% of the main-stem Nisqually is in protected stewardship, restoration of the Mashel River is nearly complete, and the
estuary restoration was completed in late 2009, with the total creation of over 900 acres and 21.5 miles of side-channel habitat.

The next five year phase of the plan (the duration of this plan) is designed to move toward a selfsustaining natural stock where adaptation is driven by the natural component with minimal influence from the hatchery population. Fisheries will be constrained by a maximum exploitation rate and hatchery influence will be managed by pHOS objectives implemented under weir management protocols.

The harvest management objective for Nisqually Chinook under the previous harvest plan was a fixed escapement goal, met with a combination of natural and hatchery-origin spawners. The fixed goal was adjusted, to reflect the improvements to habitat conditions, with the most recent goal being 1,200 spawners. It is generally accepted that natural production of Nisqually Chinook under current conditions cannot support recent exploitation rates (average of 76% since 2000), and that hatchery strays are currently sustaining the natural population. This means that harvest rates and hatcheryorigin contribution to natural spawning must be reduced to foster development of a self-sustaining population.

A new tool for quantifying escapement and managing spawner composition in the Nisqually, a floating live-capture weir, is scheduled for construction in the summer of 2010. The intent is to reduce the percentage hatchery-origin spawners ($\mathrm{pHOS} \mathrm{)} \mathrm{to} \mathrm{levels} \mathrm{consistent} \mathrm{with} \mathrm{the} \mathrm{establishment}$ of a naturally sustaining population in the river over time, at this time hypothesized to be less than 5%. This reduction in pHOS is expected to improve the fitness of the population, as it concurrently adapts to the restored habitat conditions in the watershed.

Assessments of productivity for Nisqually Chinook have been complicated by uncertainty in escapement estimates, due in part to uncertainty in enumerating spawners in the glacially-influenced mainstem, and inability to verify the current escapement estimation methodology. Hatchery and natural-origin composition of spawning escapement are only available for returns since 2004. Application of the habitat-based EDT methodology by the Nisqually Stock Assessment Workgroup estimated that under current habitat conditions and assumptions of stock fitness, the MSY harvest rate for the natural spawning Nisqually Chinook is 47%.

Harvest management objectives

The harvest management objective for Nisqually Chinook under this plan is to apply a total exploitation rate ceiling to impacts on the natural-origin component of the population, beginning with the 2010 season. The exploitation rate ceiling will involve a stepped reduction from recent levels. In 2010 and 2011, fisheries will be planned to not exceed a total exploitation rate of 65%; in 2012 and 2013, the exploitation rate ceiling will be 56%; in 2014 the exploitation rate ceiling will be reduced to 47%. During pre-season planning the FRAM projection of the ER for the unmarked stock will inform compliance with the ER ceiling.

This transition to lower harvest mortality is consistent with recovery under current habitat conditions and assumptions of stock fitness. Reducing the total exploitation rate will include significant changes in management of the tribal fishery in the Nisqually River that reduce mortality of naturalorigin Chinook, while maintaining harvest opportunity on local hatchery production. New methods for selective harvest of hatchery-origin Chinook will be evaluated. However, the Tribe expects to maintain a substantial Chinook fishery in the river that will involve significant harvest of naturalorigin Chinook.

The forecast for natural-spawning Nisqually Chinook is developed by averaging past years' natural 4B run-sizes which are composed of marked hatchery, unmarked hatchery, and other unmarked and natural-origin fish. This forecasting methodology will continue for the next $4-5$ years during transition to the intended objective of a pHOS level above the weir that is less than 5%. The forecasting methodology is highly unlikely to produce a forecast that would approach levels raising a concern about low abundance, and so the need to identify a harvest regime to respond to such a circumstance during the term of the plan is unlikely. Even greater reduction in risk to population adaptation will be achieved by significantly reducing terminal area fishery impacts as called for in the plan and the expected increase in NOR escapement relative to levels expected under prior harvest regimes.

A LAT will be developed by co-managers in consultation with NOAA Fisheries as information derived from initial implementation of the weir is available. Management to achieve the LAT will ensure that the burden of a conservation response to critical status is not disproportionately place on terminal area fisheries.

A weir operation protocol will be developed by the co-managers defining the process used to regulate passage of hatchery-origin adults to achieve the target contribution to natural escapement. An initial protocol will be defined after initial testing but prior to full implementation of the weir, expected with the 2011 season. As experience is gained operating the weir, the protocol will modified as needed to meet the recovery strategy objectives. This recovery strategy will experimentally test whether controlling pHOS will mitigate domestication risk to fitness. There is uncertainty regarding the existing fitness level of the natural stock and how it will respond to altered composition of spawners. Use of the weir to reduce pHOS will likely lead to an immediate reduction in total spawner abundance in the Nisqually. The weir will enable more accurate estimation of escapement, and improved monitoring of survival and productivity.

The weir operation protocol will specify actions to be taken in response to critical status of Nisqually chinook, including passage of additional hatchery fish if population demographics are thought to be threatened. The co-managers intend that implementation of the weir operational protocol will result in increasing levels of spawning escapement and abundance of natural-origin chinook over time, particularly as their genetic adaptation accelerates and fitness improves.

Data gaps

- Improve total natural escapement estimates
- Use data collected at the new weir, along with continue data collection through spawner surveys, to recalibrate past natural escapement estimates
- Continue age-specific estimates of both natural and hatchery-origin recruits, including the possibility of complete parentage studies
- Develop stock-recruit analysis and quantify the current natural productivity of the system as improved data are collected, and as habitat and hatchery changes lead to future changes in productivity

Skokomish River Management Unit Status Profile

Recovery Strategy

Harvest management objectives for Skokomish Chinook reflect a new strategy for recovering Chinook salmon with historical life history patterns, suited to environmental conditions in a restored Skokomish watershed. Historically, early-returning Chinook were produced in the upper North and South Fork reaches of the Skokomish River. The recent settlement agreement between the Skokomish Tribe, the City of Tacoma, State and Federal Resource agencies regarding operation of the Cushman hydroelectric project and associated mitigation supports restoration of early (spring) Chinook, initially in the North Fork, and subsequently in the South Fork. Details of this strategy are being developed as part of the Skokomish River Chinook Salmon Recovery Plan (SRCSRP), to achieve the Co-managers' objective of recovering a self-sustaining, naturally-produced Chinook population in the Skokomish watershed.

The Co-managers believe that this is the best strategy for restoring a Chinook population in the Skokomish River, however we recognize the ultimate success of this strategy is uncertain. Therefore this Plan will continue to be evaluated on the performance of the current fall-timed Chinook population while the spring Chinook re-introduction plan is developed and implementation begun. The co-managers have agreed to take the following steps during the term of this plan in order to maintain the viability of the current fall-timed Chinook population and to ensure that there will be a spring Chinook program to evaluate at the end of this plan:

- The Co-managers will implement a 50% exploitation rate ceiling for the current naturally spawning Chinook fall-timed population in the Skokomish River.
- The Skokomish Tribe, WDFW and Tacoma Power will develop the spring Chinook reintroduction plan and will begin the implementation of the program. The plan for the program will be developed within 9 months of the date of the issuance of the operating license for the Cushman Hydroelectric Project by the Federal Energy Regulatory Commission. The Plan will be reviewed for approval by NOAA Fisheries, the U.S. Fish and Wildlife Service and the Bureau of Indian Affairs as per the Cushman Settlement Agreement.
- If during the term of this Resource Management Plan it is agreed that the current run timing is not optimum for recovery of a fall-timed Skokomish River Chinook population, a scientific inquiry will be undertaken for the purpose of determining the optimum run timing of a recoverable fall-timed Skokomish River Chinook population. The inquiry will also be intended to determine an appropriate and feasible means of establishing a brood source for a recoverable fall-timed population.
- A plan to manage for naturally-spawning, natural-origin broodstock for a fall-timed Chinook population will be developed and adopted by 2012.

Spawning Distribution

Two hydroelectric dams block passage to the upper North Fork Skokomish watershed. The reservoirs inundate 18 miles of river habitat that was formerly suitable to Chinook production.

Chinook currently spawn throughout the Mainstem Skokomish River up to the confluence of the South and North Forks. In the South Fork spawning primarily occurs below RM 5.0 including Vance Creek. In the North Fork spawning occurs upstream to Cushman Dam at RM 17.0. However, a majority of the spawning in the North Fork has historically occurred below RM 13.0 due to low flow releases from the hydroelectric facility limiting access higher in the system (WDF et al. 1993).

Under the terms of the recent Cushman settlement agreement, flow in the North Fork below the lower dam will be regulated to track the natural hydrologic regime. Increased volume flow will be provided in the winter and early spring to restore channel function in the North Fork and Mainstem. These measures are expected to improve conditions for migration passage and rearing in the North Fork, but flushing flows will have short-term negative impacts. Under the new restoration strategy, spring Chinook will be introduced into the lake and upper watershed with upstream and downstream passage provided through the two dams.

Abundance Status of Fall Chinook

Historically, the Skokomish River supported the largest natural Chinook production of any stream in Hood Canal, but the construction and operation of the Cushman hydroelectric project coupled with severe habitat degradation, has reduced the productive capacity of the basin.

Hatchery Chinook production at the George Adams hatchery augments harvest opportunities and provide partial mitigation for the loss of production due to construction and operation of the Cushman hydroelectric project.

Chinook escapements to George Adams Hatchery have increased since the mid-1990's and have ranged from about 4,000 to 16,000 fish since 2000 (Table 2).

Table 1. Chinook spawning escapement in the Skokomish watershed (Skokomish Chinook technical workgroup 2006).

Year	Natural Escapement	Hatchery Escapement
1988	2666	4,930
1989	1204	2,556
1990	642	2,186
1991	1719	3,068
1992	825	294
1993	960	612
1994	657	495
1995	1398	5,196
1996	995	3,100
1997	452	1,885
1998	1177	5,584
1999	1692	8,227
2000	962	4,033
2001	1913	8,816
2002	1479	8,834
2003	1125	10,034
2004	2398	12,278
2005	2032	16,018
2006	1209	12,356
2007	531	13,720
2008	1209	13,695
1.	2007 estimate is based on incomplete	
survey coverage, and is subject to change		
based on comanager review.		

There is significant uncertainty in estimates of natural escapement for some years in this time series. Estimates of the proportions of hatchery-origin and natural-origin fish among natural spawners are uncertain and perhaps biased in years prior to 2008 due to relatively low sampling rates, few recoveries of coded-wire tagged or marked Chinook, and uncertainty about expanding marked recoveries to fully account the hatchery proportion. Estimates of hatchery origin-fish in the natural escapement from 1998 to 2007 varied from 7% to 95%, and averaged approximately 56%.

Harvest distribution and exploitation rate trends

The harvest distribution of Skokomish fall Chinook is described by coded-wire tag recoveries of fingerlings released from George Adams Hatchery. The standard analysis conducted by the PSC Chinook Technical Committee involves expansion of estimated recoveries from fisheries to account for adult equivalence and non-landed mortality. The average of 2001-2006 recoveries indicates that 58% percent of CWT recoveries were from Washington fisheries (Table 2).

Table 2. Average distribution of fishery mortality of George Adams Hatchery fingerling Chinook, from analysis of CWT recoveries (CTC 2008).

AK	BC	WA troll	WA net	WA sport
1.7%	40.2%	10.7%	16.5%	30.9%

The total annual (i.e., management year) exploitation rate, computed by post-season FRAM runs has been relatively stable since 2001, when the first Puget Sound Chinook Harvest Plan was implemented. Pre-terminal SUS ERs ranged from 7\% to 11\%, and terminal ERs ranged from 20% to 38%.

Table 3. Total fishery-related adult equivalent exploitation rates of Skokomish River natural fall Chinook for management years 2001-2008, estimated by post-season FRAM validation runs.

Year	North	PT SUS	Term	Total
2001	15%	10%	31%	55%
2002	15%	9%	27%	51%
2003	19%	7%	34%	59%
2004	22%	10%	23%	55%
2005	31%	7%	20%	58%
2006	15%	8%	35%	58%
2007	18%	11%	38%	67%
2008	16%	8%	38%	62%

Management Objectives

Harvest of fall Chinook will be managed under the 50% exploitation rate ceiling, applied to naturally spawning fall Chinook by reference to the FRAM projection of the ER for the unmarked Skokomish stock. Achieving this objective will involve a significant reduction of harvest mortality in SUS fisheries, and is expected to result, on average, in higher natural escapement than recent years.

The Upper Management Threshold will be 3650 (the aggregate of 1650 natural spawners and 2000 escapement to the hatchery), and the Low Abundance Threshold will be 1,300 (the aggregate of 800 natural spawners and 500 escapement to the hatchery).

If pre-season projections of natural escapement fall to 800 or less, and/or hatchery escapement falls below 500 , pre-terminal SUS fisheries will be further constrained so as not to exceed an ER of 12%. Terminal recreational and net fisheries directed at chinook salmon will be adjusted, in combination with the constraints to pre-terminal fisheries, with the intention of increasing the number of natural spawners above 800 .

There is substantial evidence that the productivity of the extant fall stock is very low, due, in part, to the constraints imposed by current habitat conditions. Domestication of hatchery-origin Chinook has occurred as result of their early life history in the hatchery environment, and due to hatchery cultural practices. The productivity of hatchery-origin adults that return and spawn naturally may be reduced. This loss of fitness, which has only been theoretically quantified, has occurred over many generations of artificial production. Advanced freshwater entry, spawning and emergence timing may also be significantly affecting productivity. These factors suggest that long-term recovery objectives may not be achieved by the extant, introduced stock.

If the early-timed stock re-introduction proceeds as now planned, with release of sub-yearling smolts as early as the spring of 2012, the first adults from this initial broods would return starting in 2014. We cannot predict the level or distribution of fishing mortality these Chinook will experience. The Recovery Plan will specify the elements of the monitoring program necessary to estimate catch distribution and fishing mortality, and develop harvest objectives and conservation measures.

The ongoing Chinook recovery effort will continue to address habitat constraints in the Mainstem and lower reaches of the North and South Fork. High flows into the lower North Fork will be implemented to restore structure and function to the channel. Hydro project operations will result in normative hydrology, as specified by the Cushman settlement. Aggradation in the lower South Fork and Mainstem will be addressed as the ACOE General Investigation concludes, possibly by largescale removal of accumulated material. Engineered logjams will be installed and the riparian area re-vegetated to restore structure and function to lower South Fork channel. Rearing habitat in the delta will be increased and improved by removing dikes and re-connecting side channels. Some of these habitat restoration efforts will have short-term negative effects on Chinook production, but initial focus on re-introduction of early Chinook into North Fork and upper South Fork can proceed while habitat restoration proceeds in the lower basin. The potential for Chinook recovery will not be known until the effectiveness of habitat restoration is realized.

Monitoring

- Continue spawning survey regime and re-evaluate the current methodology used to estimate natural spawning escapement.
- Monitor the effects of flushing flows, and resulting channel changes in the North Fork on spawning distribution.
- Sample terminal catch and spawning grounds to determine age composition and hatchery / natural origin.
- Operate smolt trap(s) to estimate production from the South and (after early-stock reintroduction) North Fork.

Mid-Hood Canal Management Unit Status Profile

Component Sub-populations

Hamma Hamma River summer/fall
Dosewallips River summer/fall
Duckabush River summer/fall

Geographic description

Chinook spawn in the Hamma Hamma River mainstem up to RM 2.5, where a barrier falls prevents higher access. Spawning can occur also in its tributary, John Creek, when flow permits access. A series of falls and cascades, which may be passable in some years, block access to the upper Duckabush River at RM 7, and to the upper Dosewallips River at RM 14. Spawning may also occur in Rocky Brook Creek, a tributary to the Dosewallips. Most tributaries to these three rivers are inaccessible, high gradient streams, so the river mainstems provide nearly the entire production potential.

Population structure

In delineating historical population structure, the Puget Sound Technical Recovery Team (TRT) concluded the three Mid-Hood Canal rivers may have supported a single independent population (Ruckelshaus et al. 2006). The proximity of the Mid-Hood Canal rivers to the Skokomish River suggests there could have been genetic exchange between fish originating in the watersheds. The TRT also considered alternative population structures for Hood Canal, including the possibility that one or more self-sustaining population of Chinook (e.g., fall and/or spring) occurred in the Skokomish River and that the Dosewallips, Duckabush, and Hamma Hamma rivers were largely supported by the Skokomish Chinook "source" population.

Genetic analysis compared adults returning to the Hamma Hamma River in 1999 with other Hood Canal and Puget Sound populations. This study, although not conclusive, suggests that returns to the Hamma Hamma River are not genetically distinct from the Skokomish River returns, or recent George Adams and Hoodsport hatchery broodstock (A. Marshall, WDFW unpublished data). This may be due to straying of Chinook that originate in the Skokomish River, and the George Adams and Hoodsport hatcheries into Mid Hood Canal rivers, and use of similar broodstock by the hatchery program in the Hamma Hamma River.

Status

The time series of escapement estimates since 1990 indicate the population is in chronic critical status (Table 1). Escapement estimates for years prior to 1986 are not accurate, because they were extrapolated from estimates for the Skokomish River, not based on local surveys. Escapement survey areas and survey effort have changed recently so the time series shown in Table 1 may not consistently represent total escapement in the index reaches of these rivers. Surveys in the lower
reaches may include some 'dip-ins' that ultimately spawn elsewhere in Hood Canal. Nonetheless, it is apparent that the population is currently in critical status. Although recoveries of hatchery Chinook have occurred in the Dosewallips and Duckabush rivers, the proportion of hatchery-origin adults spawning in these rivers is uncertain because few carcasses are available to sample and southern Hood Canal hatchery releases have only recently been mass-marked. Preliminary analysis of carcass samples collected in 2008 in the Hamma Hamma River, where a proportion of the broodstock for the Chinook supplementation program is sourced from the Skokomish River hatchery, estimated that hatchery-origin Chinook comprised 53% to 62% of the natural spawners. (WDFW and PSIT 2009). For most recent years, carcass sample sizes are too low to accurately estimate the number of Hamma Hamma returns, and other hatchery-origin strays.

Table 1. Natural spawning escapement of Mid-Hood Canal fall Chinook salmon, 1990-2008.

Year	Hamma Hamma	Duckabush	Dosewallips	Total
1990	35	10	1	46
1991	30	14	42	86
1992	52	3	41	96
1993	28	17	67	112
1994	78	9	297	384
1995	25	2	76	103
1996	11	13	n / a	
1997		no estimates		
1998	172	57	58	287
1999	557	151	54	762
2000	381	28	29	438
2001	248	29	45	322
2002	32	20	43	95
2003	95	12	87	194
2004	49	0	80	129
2005	33	2	10	45
2006	16	1	13	30
2007	60	4	9	73
2008	255	0	18	273

Uncertainty about the historical presence of a natural population notwithstanding, current habitat conditions may not be suitable to sustain natural Chinook production. Although spawner abundance estimates showed a dramatic increase between 1998 and 2001, that increase was followed by a decrease of similar magnitude since 2002. There is evidence to suggest that these changes in abundance were in part related to concurrent changes in marine net pen yearling Chinook hatchery production in the area, and therefore not indicative of changes in the status or productivity of the population. (WDFW memorandum to Co-Managers, February, 2010).

Harvest distribution and exploitation rate trends:

The harvest distribution and recent fishery exploitation rates of Mid-Hood Canal Chinook have not been directly estimated because releases from Hamma Hamma hatchery program were not codedwire tagged until brood year 2004. However, it is reasonable to assume that, given their similar life history, tagged fingerling Chinook released from the George Adams Hatchery on the Skokomish River follow a similar migratory pathway and experience mortality in a similar set of pre-terminal fisheries in British Columbia and Washington. A summary of recent analyses of the Skokomish River data is shown in that profile.

The FRAM model is used to provide both pre-season and post-season estimates of exploitation rates for the Mid-Hood Canal Chinook. Post-season FRAM estimates of the total annual exploitation rate for Mid-Hood Canal Chinook show a dramatic decrease in the average rate of 63% for the period of 1983 - 1997, to an average of 26% for the period of 1998-2008 (Figure 1). The exploitation rate on Hood Canal Chinook in northern fisheries (Alaska and Canada) has not shown this same dramatic decrease, with the recent year average (16% since 1998) only 5% less than the average for the earlier period (21% for 1983 - 1997). Southern U.S. exploitation rates declined from an average rate of 41% for the period $1983-1997$, to just 10% for the period $1998-2008$. Terminal area exploitation rates have been very small since 1998, averaging less than 1%. FRAM estimates of fishing impacts on Mid-Hood Canal Chinook utilize recoveries of George Adams Hatchery tags in the model base period. The co-managers are currently re-examining those assumptions for Mid-Hood Canal Chinook in Hood Canal and other Puget Sound fisheries.

Figure 1. Total annual adult equivalent fisheries exploitation rate of Mid-Hood Canal Chinook from 1983 - 2008, as estimated by FRAM validation runs.

Management Objectives

The management objective for the Mid-Hood Canal MU is to maintain and restore sustainable, locally adapted, natural-origin Chinook sub-populations. The objective of harvest management is to avoid impeding recovery of the Mid-Hood Canal Chinook population.

The UMT is set at 750 , which is the best available estimate of MSH escapement for the Mid Hood Canal population. If escapement is projected to be less than 750 pre-terminal fisheries in southern U.S. areas will be managed to not exceed an exploitation rate of 15%, as estimated by the FRAM model. In this case, preterminal fisheries include the coastal troll and recreational fisheries managed under the Pacific Fisheries Management Council, marine commercial fisheries outside of Hood Canal, and marine recreational fisheries in Puget Sound. The extreme terminal areas for this management unit, which include the Hamma Hamma, Dosewallips, and Duckabush rivers, will be closed if escapement is not projected to exceed 750.

Terminal-area fisheries at the far southern end of Hood Canal, near the mouth of or in the Skokomish River, are assumed to have no impact on the mid-Hood Canal population. Coded-wire tag recovery data representing Mid-Hood Canal Chinook, including recoveries of Hamma Hamma hatchery Chinook, are being reviewed to evaluate the validity of this assumption.

A low abundance threshold of 400 Chinook spawners has been established for the Mid-Hood Canal MU. This value is approximately 50% of the current MSY goal for the Mid-Hood Canal subpopulations. If escapement is projected to fall below this threshold, conservation measures will be implemented in preterminal SUS fisheries to further reduce mortality, such that that the projected preterminal Southern U.S. (PTSUS) exploitation rate does not exceed 12.0\%.

Spawning escapement has been below the low abundance threshold each year since 2000 and critical status for this management unit is expected to persist for the duration of the Plan. The co-managers recognize the need to provide across-the-board conservation measures in this circumstance, and to avoid an undue burden of conservation falling on the terminal fisheries.

Fishery controls implemented according to the Co-managers' 2004 Plan have resulted in total Southern U.S. exploitation rates that have not exceeded 12% in any year. The total exploitation rate in all Southern U.S. fisheries during the period 2004-2008 ranged from 12\% (2004) to 7\% (2005), and averaged 9%. The recent year average rate of 9% is the expected impact over the proposed term of the Co-managers' Plan.

Terminal-area fisheries in northern Hood Canal were shaped in 2005-2008 to reduce mortality of Mid Hood Canal Chinook to an average of 0.3%, as estimated pre-season by FRAM. Tribal net fisheries in Areas 12 and 12B have been closed during the Chinook management period; coho fisheries which have been delayed until late September in Area 12, and until October in Area 12B, may include very low incidental mortality on Mid Hood Canal Chinook; Tribal beach seine fisheries in Area 12, 12A, and 12B are required to release Chinook until September $30^{\text {th }}$. Recreational fisheries in northern Area 12 have been closed, or required to release Chinook through October $15^{\text {th }}$. Similar regulatory measures are anticipated to continue for the duration of this Plan.

Data gaps

- Continue to improve escapement estimates
- Evaluate performance of the pre-season forecasts and make appropriate refinements
- Develop means to assess the origin composition of adults in the escapement
- Use additional adult escapement, spawner composition, and juvenile outmigrant data as they become available, to improve understanding of the productivity and capacity of the MU
- Monitor and evaluate historic and recent coded-wire tag recoveries, including recoveries of tags from the Hamma Hamma supplementation program, in fisheries and escapement to review current assumptions about effects of fisheries within Hood Canal and other Puget Sound marine areas upon Mid-Hood Canal Chinook.

Management Unit Status Profiles

Dungeness Management Unit Status Profile

Component Populations

Dungeness River Chinook

Distribution and Life History Characteristics

Chinook spawn in the Dungeness River up to RM 18.9, where falls, just above the mouth of Gold Creek, block further access. Spawning distribution, in recent years, has been weighted toward the lower half of the accessible reach with approximately two-thirds of the redds located downstream of RM 10.8. Chinook also spawn in the Gray Wolf River (confluence with Dungeness at RM 15.8) up to RM 5.1.

The entry timing of mature Chinook into the Dungeness River is not described precisely, because of chronically low returns of adults. It may occur from spring through September. Adult weir operations in 1997 and 2001 indicate that most of the adult Chinook return has entered the river by early August. Spawning occurs from early August through early October (WDFW, unpublished data). At the current low level of abundance, no distinct spring or summer populations are distinguishable in the return. Chinook typically spawn first in the upstream reaches and as the spawning season progresses, further downstream in the lower mainstem reaches (WDFW et al.1993). Ocean- and stream-type life histories have been observed among juvenile Chinook in the system, with extended freshwater rearing more typical of the earlier-timed segment (Williams et al.1975). Hirschi and Reed (1998) found that a significant number of Chinook juveniles overwinter in the Dungeness River.

Smolts from the Dungeness River exhibit primarily an ocean-type life history, with age-0 emigrants comprising 95 to 98 percent of the total (WDF et al.1993, Smith and Sele 1995, and WDFW 1995 cited in Myers et al.1998). Adults mature primarily at age four (63%), with age 3 and age 5 adults comprising 10% and 25%, of the annual returns, respectively (PNPTC 1995 and WDFW 1995 cited in Myers et al.1998).

Stock Status

The SASSI report (WDF et al.1993) classified the Dungeness spring/summer as critical due to a chronically low spawning escapement to levels, such that the viability of the stock was in doubt and the risk of extinction was considered to be high. Dungeness Chinook continued to be classified as critical in the SaSI report (WDFW 2003) because of continuing chronically low spawning escapements.

The nominal escapement goal for the Dungeness River is 925 spawners, based on historical escapements observed in the 1970's and estimated production capacity re-assessed in the 1990's (Smith and Sele 1994). From 1986 through 2000, the average escapement was only 153 (Table 1). Escapements increased from 2000 through 2006, averaging 893. It should be noted however that the increase in escapements was largely attributable to the captive brood supplementation program,
as estimates of natural-origin fish have remained low, averaging only 179 from 2001-2006. The captive brood program, by design, came to a conclusion after the 2003 brood (see below for description of hatchery actions), and escapements have shown corresponding decreases in the 2007 and 2008 return years.

Table 1. Spawning escapement, broodstock collection, and hatchery/natural-origin composition of Dungeness River Chinook 1986-2008.

Return year	Estimated number of natural spawning Chinook	Number of Chinook collected for broodstock plus pre-spawned mortalities	Total adult Chinook return	Number and percent of HOR Chinook in natural spawning population (NS) a/	Number and percent of NOR Chinook in natural spawning population (NS) a/
1986	238	0	238	Unknown	238
1987	100	0	100	Unknown	100
1988	335	0	335	Unknown	335
1989	88	0	88	Unknown	88
1990	310	0	310	Unknown	310
1991	163	0	163	Unknown	163
1992	153	0	153	Unknown	153
1993	43	0	43	Unknown	43
1994	65	0	65	Unknown	65
1995	163	0	163	Unknown	163
1996	183	0	183	Unknown	183
1997	50	0	50	Unknown	50
1998	110	0	110	Unknown	110
1999	75	0	75	Unknown	75
2000	218	0	218	Unknown	218
2001	453	0	453	436 (96.3\%)	17 (3.6\%)
2002	633	0	633	518 (81.8\%)	115 (18.2\%)
2003	640	0	640	517 (80.8\%)	123 (19.2\%)
2004	953	61	1,014	815 (80.9\%)	193 (19.1\%)
2005	955	122	1,077	651 (68.2\%)	304 (31.8\%)
2006	1,405	138	1,543	1,112 (79.2\%)	293 (20.8\%)
2007	305	98	403	159 (52.0\%)	146 (48.0\%)
2008	140	89	229	54 (38.6\%)	86 (61.4\%)

Chinook production in the Dungeness River is constrained, primarily, by degraded spawning and rearing habitat in the lower half of the basin. Significant channel modification has contributed to substrate instability in spawning areas, and has reduced and isolated side channel rearing areas. Water withdrawals for irrigation during the migration and spawning season have also limited access to suitable spawning areas and decreased habitat availability.
WDFW has operated screw traps in the lower Dungeness each year since 2005, to estimate the number of juvenile salmon produced in the basin. Estimates for Chinook production (Table 2)
ranged from a high of 136,571 in 2007 to a low of 14,239 smolts in 2008 (Data are available in WDFW juvenile monitoring annual report series, including Topping et al.(2008)). Estimated egg to smolt survival has averaged around 4% over that period. For comparison, similar data collected in the Skagit River, a healthier Chinook system, produce egg to smolt survival estimates of around 8% for the same period, and over 10% since 1990 . The low egg to smolt survival rate estimates for Dungeness Chinook are indicative of the habitat degradation mentioned above, and of the general low productivity of the population.

Table 2. Dungeness Chinook adult escapement (natural-spawning), potential egg deposition, Chinook smolts produced, and estimated egg to smolt survival for 2004-2008 broods.

Brood year	Outmigrant year	Adults	Females	Potential egg deposition	Smolts	Egg to smolt survival
2004	2005	953	381	$1,906,000$	69,392	4%
2005	2006	955	382	$1,910,000$	124,928	7%
2006	2007	1405	562	$2,810,000$	136,571	5%
2007	2008	305	122	610,000	14,239	2%
2008	2009	140	56	280,000		

The co-managers, in cooperation with federal agencies and private-sector conservation groups, implemented a captive brood stock program to rehabilitate Chinook runs in the Dungeness River. The primary goal of this program was to increase the number of fish spawning naturally in the river, while maintaining the genetic characteristics of the existing stock. The last significant egg take from the captive brood program occurred in 2003. Beginning in 2004, returning adults have been collected and spawned, with the goal of releasing 100,000 zeros and 100,000 yearlings each year.

In addition to the broodstock program, the local watershed council (Dungeness River Management Team) and a work group of state, tribal, county and federal biologists have been working on several habitat restoration efforts. Based on the 1997 report, "Recommended Restoration Projects for the Dungeness River" by the Dungeness River Restoration Work Group, local cooperators have installed several engineered log jams, and acquired small riparian refugia properties. Other projects including larger scale riparian land acquisition, dike setback, bridge lengthening and setback, as well as estuary restoration are in the planning, analysis and proposal phases.

Management Objectives

The management objective for Dungeness Chinook is to stabilize escapement and recruitment, as well as to restore the natural-origin recruit population through supplementation and fishery restrictions.

The UMT for the Dungeness MU is 925 , corresponding to the nominal escapement goal described above. The LAT is 500 natural spawners, which is approximately 50% of the escapement goal.

When projected escapement to the Dungeness River exceeds the LAT of 500, southern U.S. fisheries will be managed to not exceed a 10.0% ceiling ER. Projected escapement refers to the FRAM accounting for the combined HOR and NOR adults. Fishery mortality in terminal and extreme terminal fisheries is expected to be very low for the duration of this Plan, because Chinook-directed commercial and recreational fisheries are not expected to occur, and coho and pink fisheries will be regulated to limit incidental Chinook mortality.

If escapement is projected to be below the LAT, SUS fisheries will be managed to further reduce incidental mortality to AEQ impacts of less than 6.0%.

Direct quantification of the productivity of Dungeness Chinook will require either the accumulation of sufficient coded-wire tag recoveries to reconstruct cohort abundance, or an alternate method of measuring freshwater (egg-to-smolt) and marine survival. Releases from the supplementation program are represented by coded-wire tagged groups, adipose fin marked groups, otoliths-marked groups and blank-wire tag groups. Recoveries of these tags, otoliths, and marks will enable cohort reconstruction. However, given the degraded condition of spawning and rearing habitat in the lower mainstem, it must be assumed that current natural productivity is critically low.

The lack of stock specific historical tag information has necessitated the interim use of a neighboring representative stock in fishery simulation modeling of Dungeness Chinook salmon. Tagged Elwha Hatchery fingerlings are used by the FRAM to estimate the harvest distribution and exploitation rates for the Elwha and Dungeness management units. (See Elwha Profile, below). Also, for units with very low abundance, such as the Dungeness, the FRAM model's accuracy may be limited. However, the co-managers will continue to develop and adopt conservation measures that protect critical management units, while realizing the constraints on quantifying their effects in the simulation model.

Data gaps

- Describe freshwater entry timing
- Continue to collect scale or otolith samples to describe the age composition of the terminal run.
- Describe the fishery contribution and estimate fishery-specific exploitation rates from CWT recoveries.
- Estimate marine survival.
- Continue annual estimates of smolt production, and corresponding estimates of freshwater survival

Elwha River Management Unit Status Profile

Component Populations

Elwha River Chinook

Geographic Distribution and Life History Characteristics

Summer Chinook spawn naturally in the portions of the lower 4.9 miles of the Elwha River, below the lower Elwha dam, though most of the suitable spawning habitat is below the City of Port Angeles' water diversion dam at RM 3.4. Their productive capacity is very low, because of extremely restricted suitable habitat. Their productivity is also very low due to severely altered and degraded spawning and rearing habitat, and high water temperatures during the adult entry and spawning season, which contribute to pre-spawning mortality (see Table 2, below).

Entry into the Elwha River begins in early June and continues through early September. Spawning begins in late August, and peaks in late September and early October (WDF et al.1993). Elwha Chinook mature primarily at age 4 (57%), with age 3 and age 5 fish comprising 13% and 29%, of annual returns, respectively (WDF et al.1993, WDFW 1995, PNPTC 1995 cited in Myers et al.1998).

Naturally produced smolts emigrate primarily as subyearlings. Roni (1992) reported that 45 to 83% of Elwha River smolts emigrated as yearlings, and 17 to 55 percent as subyearlings, but this study did not differentiate naturally produced smolts from hatchery releases of yearlings.

Status

Elwha River Chinook were originally designated as "healthy" in the SASSI document (WDF et al.1993), which considered productivity in the context of the currently available habitat for natural production. Because of chronically low levels of spawner escapement during the last decade, the SaSI report (WDFW 2003) reclassified the Elwha Management Unit as "depressed."

The stock is a composite of natural and hatchery production. In the Elwha River, Chinook production is limited by two hydroelectric dams which block access to upstream spawning and rearing habitat. Recovery of the stock is dependent on removal of the two dams, and restoration of access to high quality habitat in the upper Elwha basin and certain tributaries. Chinook produced by the hatchery mitigation program in the Elwha system are considered essential to the recovery, and are included in the listed ESU.

Preparations are underway for the removal of the Elwha and Glines Canyon dams, with the physical removal of the dams scheduled to begin in 2011. The removal of the dams will lead to periods of high sediment loads in the lower river, and may make that area unsuitable for spawning. During this time, the hatchery program will focus on maintaining the integrity of the gene pool of the existing population. The Elwha River Fish Restoration Plan (Ward et al.2008) provides details on the approaches being used for restoring Chinook and other species in the basin. Multiple strategies
ranging from the transport of adult spawners upstream of the construction areas, the outplanting of smolts and pre-smolts in a variety of areas throughout the watershed, and maintaining a separate broodstock source in nearby Morse Creek will minimize the risk of losing this critical stock of Chinook in the Strait of Juan de Fuca region.

Over the last decade or more, Elwha hatchery egg-take goals have largely remained static, producing between 3 and 4 million subyearling Chinook. Survival rates to adult spawner of these releases have been highly variable for return years 1999-2008, ranging from 0.02% to 0.14% and averaging 0.07% returning to the Elwha River. Yearling releases of approximately 500,000 smolts weres discontinued in 1995 due to high costs and poor survival rates associated with this release strategy (approximately 0.2% smolt to adult survival in most years; Figure 1). Yearling production of 200,000 to 400,000 smolts was restarted in BY2002; initial returns indicate a further decrease of smolt to adult survival rates of less than 0.05%. Poor ocean conditions in recent years may account for some of these results, but managers are evaluating the efficacy of this production strategy for Elwha River Chinook.

Figure 1. Fingerling and yearling return rates for Elwha River hatchery Chinook releases, Brood Years 1986 to 2004 (R. Cooper, WDFW, unpublished data).

The nominal spawning escapement goal of 2,900 for Elwha River Chinook has been achieved only once since the 1980s (Table 1), even though SUS harvest has been drastically reduced, and in-river fishery impacts have been absent for over 10 years. The average number of spawners over the last five years (2004-2008) has been 1,947, around 100 fewer than the average of 2,053 for the preceding five years (1999-2003).

Table 1. Total spawning escapement of Elwha River Chinook, 1986-2008.

Year	Escapement	Year	Escapement
1986	2,269	1998	2,358
1987	3,631	1999	1,602
1988	7,395	2000	1,851
1989	4,927	2001	2,208
1990	2,956	2002	2,376
1991	3,361	2003	2,227
1992	1,222	2004	3,404
1993	1,562	2005	2,119
1994	1,216	2006	1,913
1995	1,150	2007	1,146
1996	1,608	2008	1,153
1997	2,517		

Pre-spawning mortality has been a significant factor affecting natural and hatchery production in the Elwha system. High water temperature during the period of freshwater entry and spawning is exacerbated by impoundment of the river behind the two upstream dams. It contributes directly to prespawning mortality, and in some years, promotes the infestation of adult Chinook by Dermocystidium. Pre-spawning mortality has ranged up to 68% of the extreme terminal abundance (Table 2), largely due to parasitic infestation. Presumably dam removal will help to alleviate prespawning mortality problems.

Table 2. Prespawning mortality of Elwha River Chinook.

Return Year	Hatchery Voluntary	In-River Gross	Gaff- Seine	Hatchery Prespawn	In-River Prespawn	Total Prespawn Mortality
1986	1,285	1,842	505	376	482	27.4%
1987	1,283	4,610	1,138	432	1,830	38.4%
1988	2,089	5,784	506	428	50	6.1%
1989	1,135	4,352	905	148	412	10.2%
1990	586	2,594	886	160	64	7.0%
1991	970	2,499	857	108	N/A	3.1%
1992	97	3,762	672	26	2,611	68.3%
1993	165	1,404	771	7	0	0.5%
1994	365	1,181	749	61	269	21.3%
1995	145	1,667	518	37	625	36.5%
1996	214	1,661	1,177	147	120	14.2%
1997	318	2,209	624	3	7	0.4%
1998	138	2,271	1,551	51	0	2.1%
1999	113	1,512	609	23	0	1.4%
2000	177	1,736	1,021	62	0	3.2%
2001	195	2,051	1,396	38	0	1.7%
2002	473	1,943	1,080	40	0	1.7%

Harvest Distribution and Exploitation Rate Trend

Based on recoveries in 1993 - 1997 of tagged fingerlings released from the local hatchery, Elwha River Chinook are a far-north migrating stock, as evidenced by 16% and 59% of total fishing mortality occurring in Alaskan and British Columbian fisheries, respectively (Table 3). Net fisheries in Puget Sound account for only 1% of total fishing mortality, and Washington troll and sport fisheries account for 11%, and 22%, respectively.

Table 3. The average distribution of fishing mortality for Elwha River Chinook, expressed as a proportion of total, annual adult equivalent exploitation (CTC 2003)

Years	Alaska	B.C.	Wash. Troll	Puget Sound Net	Washington sport
$1993-97$	16.2%	58.8%	1.9%	0.8%	22.3%

Post-season FRAM simulations indicate that the total exploitation rate of Elwha River Chinook decreased in the late 1990 's, averaging 54% prior to 1998 , and dropping to 21% from 1998 to 2001 (Figure 2). From 2002 through 2006, rates climbed slightly, averaging 35% over that period. This increase is attributed to northern fisheries, as exploitation rates in SUS fisheries remained at levels less than 5% during this time (Table 4). These post-season FRAM estimates represent aggregates of JDF units, but are believed to correctly represent the trend in ER for the Elwha unit.

Figure 2. Adult equivalent fishery exploitation rates of Elwha Chinook in Alaska/BC, preterminal Southern United States, and terminal fisheries from 1983-2006, as estimated by post-season FRAM runs (2007 validation).

Table 4. Fishery-related adult equivalent exploitation rates of Elwha River Chinook for management years 2000-2006, estimated by post-season FRAM validation runs.

Year	Total	Alaska/BC	Southern US
2000	18%	16%	2%
2001	19%	16%	3%
2002	31%	26%	5%
2003	36%	30%	6%
2004	34%	30%	4%
2005	39%	36%	3%
2006	34%	31%	3%

Management Objectives

Fisheries in Washington waters, including those under jurisdiction of the Pacific Fisheries Management Council, when the escapement goal is not projected to be met, will be managed so as not to exceed a "Southern U.S." incidental AEQ exploitation rate of 10.0% on Elwha Chinook. Harvest at this level will assist recovery by providing adequate escapement returns to the river to perpetuate natural spawning in the limited habitat available, and provide broodstock for the supplementation program. It represents a significant decline in harvest pressure from levels seen in the 1980s and early 1990s in southern U.S. fisheries. The SUS exploitation rate on the Strait of Juan de Fuca management unit aggregate averaged 24\% for return years 1983 - 1996. Since 1997, actual SUS AEQ exploitation rates averaged less than 4%.

The low abundance threshold for the Elwha River is 1,000 spawners, which represents a composite of 500 natural and 500 hatchery spawners. Whenever spawning escapement for this stock is projected to be below these levels, SUS fisheries will be managed to further reduce incidental AEQ mortality to less than 6.0%.

Data Gaps

- Estimates of total and natural smolt production from the Elwha River.
- Estimates of the age composition and description of life history of smolts.
- Monitor changes to spatial structure, genetic structure and life history diversity of the population during and after dam removal.
- Reassess management objectives as the watershed recovers from removal of dams.

Western Strait of Juan de Fuca Management Unit Status Profile

Component Populations

Hoko River fall Chinook

Geographic description

Fall Chinook spawn primarily in the mainstem of the Hoko River, from above intertidal zone to RM 22, but primarily between RM 3.5 (the confluence of the Little Hoko River) to the falls at RM 10. Chinook may ascend the falls and spawn in the upper mainstem up to RM 22, and the lower reaches of larger tributaries such as Bear Creek (RM 0 to 1.2) and Cub Creek (RM $0-0.8$), Ellis Creek (0 1.0), the mainstem (RM $0-2.5$) and North Fork (RM $0-0.37$), of Herman Creek, and Brown Creek $(0-0.8)$. Chinook also spawn in the lower 2.9 miles of the Little Hoko River. Historically, Chinook have also spawned in other Western Strait streams, including the Pysht, Clallam, and Sekiu rivers. Recent surveys of the Sekiu counted small numbers of Chinook. Their origin is unknown, but they are assumed to be strays from the Hoko system.

Currently, Chinook from the Hoko Hatchery are being outplanted into the upper Hoko mainstem and tributaries of the upper and lower portions of the watershed, to seed high quality habitat, which has not been utilized consistently for spawning or rearing. Re-introduction to the Sekiu River, and other western Strait streams that once supported Chinook, is also being planned, after the Hoko River consistently achieves its escapement goals.

Life History Traits

Based on scales collected from natural spawners and broodstock from 1989 through 2008, returning Hoko River adults are predominately age $4(46 \%)$ and age 5 (34%), with age 3 and age 6 adults comprising 15% and 2%, respectively, of the mean annual return. The available data suggest that most smolts produced in the Hoko system emigrate as subyearlings (Williams et al.cited in Myer et al.1998).

Status

The established escapement goal for Hoko River Chinook is 850 natural spawners. This goal, first presented in WDF Technical Report 29 (Ames and Phinney 1977), is based on early estimates of freshwater habitat capacity. The total escapement goal is 1,050, which includes 200 broodstock for the supplementation and reintroduction program. For the Hoko Chinook stock as a whole, the combined spawning escapement (natural plus hatchery) averaged 752 spawners from 2000-2008.

Numbers of natural Chinook spawners have increased since the inception of the supplementation program in 1982, from counts of less than 200, before hatchery supplementation was initiated, to the recent year average of 610 spawners. Abundance of Hoko Chinook has been highly variable over the past 20 years, but shows no long-term positive or negative trend. Well over half the Hoko River natural spawners in most years may be attributed to the supplementation program; since 2000, an average of 67% of the total escapement to the Hoko has been over supplementation origin (H. Leon, pers. Comm..). The goal of 850 natural spawners has only been achieved in six of the last 21 years (1988 to 2008; Table 1).

Table 1. Natural spawning escapement of Chinook and hatchery broodstock removals from the Hoko River, 1988 - 2008.

Return	Year Natural	Spawners	Hatchery Brood Stock		
1988	686	90	Total	Escapement	
:---:					
1989					

Although the escapement goals set in Technical Report 29 have been commonly accepted over the past two decades, it is not certain that the spawner level of 850 is the optimum Chinook escapement level for the Hoko River. Further analysis of habitat suitability and usage should be conducted to determine whether spawning or rearing habitat limits Chinook production in the Hoko.

Additional years of cohort reconstruction may also shed light on the stock-recruitment relationship for Hoko Chinook, which may lead to revision in the escapement goal. Makah Fisheries

Management has maintained a cohort reconstruction database for Hoko Chinook (among other stocks) covering brood years since 1985. The results of this cohort reconstruction are part of an effort by MFM to improve the accuracy of pre-season forecasts, and to analyze trends in marine survival and exploitation rates.

Harvest Distribution and Exploitation Rate Trends

The migration pathway, and harvest distribution, of Hoko River Chinook has been described from recoveries of coded-wire tagged fish released from the Hoko Hatchery. The tag data suggest that Hoko Chinook are harvested primarily by coastal fisheries in Southeast Alaska and British Columbia (Table 2). Total exploitation rates on Hoko Chinook, as estimated by CWT data, have declined from an average of 33.5% between 1989 and 1999, to an average of 24.6% between 2000 and 2007 (Makah Tribe, unpublished data).

Table 2. Average distribution of fishery mortality of Hoko fall Chinook, expressed as the proportion of fishery mortality, 2000-2006 (CTC 2008).

Year	AK\%	CN\%	SUS tr \%	SUS net\%	SUS spt $\%$
2000	80.5%	12.4%	7.1%	0.0%	0.0%
2001	80.7%	15.2%	0.0%	0.0%	4.1%
2002	58.5%	38.4%	0.0%	0.0%	3.1%
2003	75.3%	24.7%	0.0%	0.0%	0.0%
2004	46.1%	50.7%	0.0%	0.0%	3.3%
2005	35.3%	59.7%	2.1%	0.0%	2.9%
2006	54.7%	41.4%	1.9%	0.0%	1.9%
Average	61.6%	34.6%	1.6%	0.0%	2.2%

Prior to 2006, the Hoko stock was aggregated with the other Strait of Juan de Fuca stocks for FRAM modeling purposes. Beginning in 2006, Hoko was separated from the other stocks using historic tag data, so FRAM-based post-season estimates of exploitation rates specific to Hoko are available for 2006 - 2008 (Table 3). Like the CWT data, FRAM suggests that Hoko Chinook are primarily harvested in northern fisheries.

Table 3. Exploitation rate on Hoko Chinook as estimated by post-season FRAM (2007 validation) 2006-2008.

Area	2006	2007^{*}	2008^{*}
Northern (AK/BC)	25.8%	32.9%	22.6%
SUS - Preterminal	3.7%	3.3%	3.7%
SUS - Terminal	0.0%	0.0%	0.0%
Total	29.5%	36.2%	26.4%
*2007 and 2008 data are preliminary			

Cohort-reconstruction estimates of recruits shows that for most brood years since the mid-1980's, the number of natural-origin recruits (the sum of landed catch, spawning escapement, plus natural and non-landed mortality) has been fewer than the number of spawners that produced them. This indicates that the problem with producing natural-origin recruits is habitat-related, very likely caused by degraded freshwater habitat, including recurrent flooding and erosion, possibly combined with poor marine survival. Almost the entire watershed (98\%) has been clearcut, and 60% of the watershed has been clearcut within the last 25 years. There are 350 miles of roads in the 72 square mile watershed.

Management objectives

Management guidelines include a recovery exploitation rate objective for the Western Strait of Juan de Fuca management unit and a low abundance escapement threshold. The recovery exploitation rate objective is a maximum of ten percent in southern U.S. fisheries. The critical escapement threshold for Hoko River is 500 natural spawners. When natural spawning escapement for this stock is projected to be below this level, the harvest management plan will call for fisheries to achieve a lower rate than the 10% ceiling SUS exploitation rate.

Data gaps

- Derive a spawner/recruit relationship for Hoko Chinook. Traditional spawner recruit/models may not be appropriate for the Hoko, given the habitat degradation and resulting low productivity of the population discussed above.

Appendix B: Tribal Minimum Fisheries Regime

Strait of Juan De Fuca Troll Fisheries:

- Open June 15 through April 15.

Strait of Juan De Fuca Net Fisheries:

- Setnet fishery for Chinook open June 16 to August 15. 1000-foot closures around river mouths.
- Gillnet fisheries for sockeye, pink, and chum managed according to PST Annex.
- Gillnet fisheries for coho from the end of the Fraser Panel management period, to the start of fall chum fisheries (approximately Oct. 10).
- Closed mid-November through mid-June.

Strait of Juan De Fuca Terminal Net Fisheries:

- Hoko, Pysht, and Freshwater Bays closed May 1 - October 15.
- Elwha River closed April 1 through mid-September, except for minimal ceremonial harvests.
- Dungeness Bay (6D) closed March 1 through mid-September; Chinook non-retention midSeptember - October 10 during coho fishery
- Dungeness River closed March 1 through September 30. Chinook non retention during coho fishery, except for minimal ceremonial harvest.
- Miscellaneous JDF streams closed March 1 through November 30.

Area 6/7/7A Net Fisheries:

- Sockeye, pink, and chum fisheries managed according to PST Annexes.
- Net fisheries closed from mid-November through mid-June.
- Area 6A Closed.

Nooksack/Samish Terminal Area Fisheries:

- Ceremonial and subsistence fisheries may occur from March to mid-June, with catch of natural-origin Chinook limited to 30, in the lower mainstem, and between the confluence of the South Fork and the confluence of the Middle Fork.
- Bellingham Bay (7B) and Samish Bay (7C) closed to commercial fishing from April 15 through July 31.
- Area 7B/7C hatchery fall Chinook fishery opens August 1.
- Nooksack River commercial fishery for hatchery fall Chinook opens August 1 in the lower river section; and staggered openings in up-river sections will occur over 4 successive weekly periods. (see Appendix A).
- Pink fishery may open August 1, subject to pink forecast.

Skagit Terminal Area Net Fisheries:

- Tribal commercial fisheries may be conducted from May 1 through April 15, provided fisheries are directed at runs with harvestable surplus.
- Treaty Ceremonial and Subsistence fishery access to Chinook of all populations.
- Net fishery impacts incidental to fisheries directed at sockeye, pink, coho, chum, and steelhead.
- Targeted hatchery spring Chinook fishery.
- Conduct test fisheries to collect in-season information including data to update the terminal run abundance.

Area 8A and 8D Net Fisheries:

- Area 8A fishery Chinook impacts incidental to fisheries directed at coho, pink, chum,
- Effort in the pink fishery will be adjusted in-season to maintain Chinook impacts at or below those modeled during the pink management period.
- Area 8D Chinook fisheries limited to C \& S beginning in May, (and to 3 days/wk during the Chinook management period).

Stillaguamish River Net Fisheries:

- Net fishery Chinook impacts incidental to fisheries directed at pink, coho, chum, and steelhead.
- Pink fishery schedule limited to maintain Chinook impacts at or below the modeled rate.

Snohomish River Fisheries:

- Net fisheries closed.

Area 9 Net Fisheries:

- Research \& tribal commercial chum, restricted to Admiralty Inlet.

Area 10 Net Fisheries:

- Closed from mid-November through June and August.
- Sockeye net fishery during first three weeks of July when ISU indicates harvestable surplus of Lake Washington stock.
- Net fisheries for coho and chum salmon will be determined based on in-season abundance estimates of those species. Limited test fisheries will begin the 2nd week of September. Commercial fisheries schedules will be based on effort and abundance estimates. Marine waters east of line from West Point to Meadow Point shall remain closed during the month of September for Chinook protection. Chinook live release regulations will be in effect

Lake Washington Terminal Area Fisheries:

- Chinook run size update based on Ballard Lock count, to re-evaluate forecasted status.
- No Chinook directed commercial fishery in the Ship Canal or Lake Washington.
- Limited Chinook test fisheries to acquire data
- Net fisheries directed at sockeye and coho salmon will be managed in-season based on abundance assessment at the Ballard Locks, and will incur incidental Chinook mortality. Incidental Chinook impacts minimized by time, area and live Chinook-release restrictions. Sockeye fisheries scheduled as early as possible. Coho fishery delayed until (September 15th) or until 95% of the Chinook run has passed through the locks. . Net fisheries directed at sockeye take place in the Ship Canal, Lake Union, and south Lake Washington. Net fisheries directed at coho take place in the Ship Canal, Lake Union, north Lake Washington, and Lake Sammamish.
- Possible Chinook-directed fishery in Lake Sammamish for Issaquah Hatchery surplus.

Area 10A Net Fisheries:

- Chinook gillnet test fishery 12 hours/week, 3 weeks, beginning mid-July to re-evaluate forecasted status.
- No Chinook directed commercial fishery.
- Net fishery impacts incidental to fisheries directed at coho. Coho opening delayed until first week of September.

Duwamish/Green River Fisheries:

- Chinook test fishery to re-evaluate forecasted abundance.
- No Chinook directed commercial fishery.
- Net fishery impacts incidental to fisheries directed at coho. Coho opening delayed until the second week of September and restricted to waters below the 16th Ave Bridge. Coho opening above the 16th Ave Bridge to the Boeing Street Bridge (upstream of the turning basin) delayed until September 22nd. Coho opening above the Boeing Street Bridge to the Hwy 99 Bridge delayed until late September
- Chinook incidentals during chum management not likely, but possible.
- Chinook test fisheries to acquire data.

Area 10E Net Fisheries:

- Closed from mid November until last week of July.
- Chinook net fishery 5 day/wk last week of July through September 15.
- Chinook impacts incidental to net fisheries directed at coho and chum, from mid-September through November

Area 11 Net Fisheries:

- Closed from end of November to beginning of September.
- No Chinook-directed fishery.
- Net fishery Chinook impacts incidental to fisheries directed at coho and chum.

Area 11A Net Fisheries:

- Closed from beginning of December to end of August.
- Net fishery Chinook impacts incidental to fisheries directed at coho and chum.

Puyallup River System Fisheries:

- Net fisheries closed from beginning of February to beginning of August.
- Chinook net fisheries limited to 1 day/week. August 7th -September 10th.
- Muckleshoot on-reservation fisheries on White River limited to hook and line C \& S fishing for seniors, with a limit of 25 Chinook.
- Puyallup tribal C\&S fishery for spring Chinook in the Puyallup mainstem
- Tribal C\&S fisheries for fall Chinook in the Puyallup mainstem and White River.
- Commercial net fishery Chinook impacts incidental to fisheries directed at coho, pink, and chum.

Fox Island/Ketron Island (Area 13) Net Fisheries:

- Closed from end of October to August 1.
- Net fishery Chinook impacts incidental to fisheries directed at coho and chum.

Sequalitchew Net Fisheries:

- Net fishery Chinook impacts incidental to fisheries directed at coho.

Carr Inlet (13A) Net Fisheries:

- Closed from beginning of October through August 1.
- Net fishery Chinook impacts incidental to fisheries directed at coho and chum.

Chambers Bay (13C) Net Fisheries:

- Closed from end of mid-October to August 1.
- Net fishery Chinook impacts incidental to fisheries directed at coho and chum.

Case Inlet Area 13D Net Fisheries:

- Closed from mid-September to August 1.
- Net fishery Chinook impacts incidental to fisheries directed at coho and chum.

Henderson Inlet (Area 13E) Net Fisheries:

- Closed year-around.

Budd Inlet Net Fisheries:

- Closed from mid-September to July 15 Net fishery Chinook impacts incidental to fisheries directed at coho and chum.

Areas 13G-K Net Fisheries:

- Closed Mid-September to August 1.
- Net fishery Chinook impacts incidental to fisheries directed at coho and chum.

Nisqually River and McAllister Creek Fisheries:

- Chinook fishery July through September managed to minimize mortality of natural origin fish. (up to three days per week dependent on in-season abundance assessment (see Appendix A).
- Coho fishery October through mid-November.
- Late chum fishery late November through January.

Hood Canal (12, 12B, 12C, 12D) Net Fisheries: (also see: Skokomish and Mid-Hood Canal Management Unit profiles in Appendix A):

- Chinook directed fishery limited to Areas 12C and 12H.
- Coho directed fisheries in Areas 12 and 12B delayed to Sept. 24; in Area 12C, to Oct. 1. Beach seines release Chinook through Oct. 15.
- 1,000 foot closures around river mouths, when rivers are closed to fishing.
- Net fisheries closed from mid December to mid July

Area 9A Net Fisheries:

- Closed from end of January to mid-August (dependent upon pink fishery).
- Beach seines release Chinook through Oct. 15.

Area 12A Net Fisheries:

- Closed from mid-December to mid-August.
- During coho and fall chum fisheries, beach seines release Chinook through Oct. 15.

Hood Canal Freshwater Net Fisheries:

- Dosewallips, Duckabush, and Hamma Hamma rivers closed.
- Skokomish River Chinook fishery August 1 - September 30, limited to two to five days per week.
- Skokomish River closed March - July 31(also see: Skokomish MU profile in Appendix A).

[^0]: ${ }^{1}$ Escapement goals for the Puget Sound indicator stocks, equivalent to the upper management thresholds stated in this plan, have been proposed to the Joint Chinook Technical Committee of the Pacific Salmon Commission for incorporation into the Chinook Agreement.

[^1]: ${ }^{1}$ Due to errors in the first sets of 2007 FRAM validation runs, they were re-run. The validation runs that were used for this analysis were those run on July 21, 2008.
 ${ }^{2}$ The FRAM-generated escapement is not the same as the observed escapement, because FRAM assumes a base period harvest rate in the terminal area. However, to calculate recruitment, which is catch + escapement, it doesn't matter whether the fish are counted as catch or escapement, as long as they are counted in one of those categories.
 ${ }^{3}$ The AEQ mortality is the calculated number of fish killed by a fishery that would have survived to spawn if there had been no fisheries. The exploitation rate is calculated as AEQ mortality/AEQ recruitment.
 ${ }^{4}$ The FRAM time steps are: TS1 = Oct-April; TS2 = May-June; TS3 $=$ July-Sept; TS4 $=$ the next Oct-April. The total mortality for a given cohort in one year is the sum of mortalities that occur in TS2, TS3, and the next age's TS4 (because FRAM ages fish one year right after TS3).

[^2]: ${ }^{5}$ Because the escapement estimation method for Skagit springs changed in 1992, there is concern about whether theestimates before 1992 are comparable to estimates made after the change. In this analysis, I ignored that concern.

[^3]: ${ }^{6}$ Actually, in the 1999 calculation, the criterion I used was a 1% probability of going extinct in 100 years. If I had used a 5% probability, the viable escapement would have been lower.

[^4]: ${ }^{1}$ A primary management unit is one for which fisheries are directly managed to achieve a particular escapement goal or exploitation rate.

[^5]: ${ }^{2}$ Note that, there are other provisions of this plan that call for further reduction of the exploitation rate ceiling should the abundance be observed or expected to be near the lower threshold. This will provide additional protection against falling below the lower threshold that is not considered in this section, which address only the conditions under which the RER would apply.

[^6]: ${ }^{3}$ Equivalently, this could be termed "potential spawners" because it represents the number of fish that would return to spawn absent harvest-related mortality.

